Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Upper and lower bounds for eigenvalues of the Laplacian on a spherical cap

Author: Frank E. Baginski
Journal: Quart. Appl. Math. 48 (1990), 569-573
MSC: Primary 35P15; Secondary 35J05, 73H05, 73K15
DOI: https://doi.org/10.1090/qam/1074972
MathSciNet review: MR1074972
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the following, we derive upper and lower bounds for eigenvalues of the Laplacian on a domain that is a spherical cap whose angular width $ 2{\vartheta _0}$ is less than $ \pi $. While previous work of this nature seems to focus on the principle eigenvalue, our results apply to any eigenvalue when $ 0 < {\vartheta _0} < \pi /2$. In addition, some of our results also apply to spherical caps for which $ 0 < {\vartheta _0} < \pi $. When our estimates for the principle eigenvalue are compared to the results of [4, 8], we find that our upper and lower bounds are sharper.

References [Enhancements On Off] (What's this?)

  • [1] F. Baginski, Ordering the zeroes of the Legendre functions $ P_v^m\left( {{z_0}} \right)$ when considered as a function of v, J. Math. Anal. Appl. 147 (1), 296-308 (1990) MR 1044702
  • [2] F. Baginski, Comparison theorems for the $ \nu $-zeroes of Legendre function $ P_v^m\left( {{z_0}} \right)$ when $ - 1 < {z_0} < \\ 1$, Proc. Amer. Math. Soc., to appear MR 1043402
  • [3] F. Baginski, The buckling of elastic spherical caps, (preprint) MR 1111366
  • [4] G. Del Grosso, A. Gerardi, and F. Marchetti, A diffusion model for patch formation on cellular surfaces, Appl. Math. Optim. 7, 125-135 (1981) MR 616503
  • [5] E. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge University Press, London, 1931
  • [6] A. Laforgia and M. E. Muldoon, Some consequences of the Sturm comparison theorem, Am. Math. Monthly 93, 89-94 (1986) MR 827581
  • [7] F. I. Niordson, Shell Theory, Elsevier Science Publishers B. V., Amsterdam, 1985 MR 807152
  • [8] M. Pinsky, The first eigenvalue of a spherical cap, Appl. Math. Optim 7, 137-139 (1981) MR 616504
  • [9] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983 MR 688146
  • [10] G. Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, New York, 1939 MR 0310533
  • [11] G. Szegö, Inequalities for the zeroes of Legendre polynomials and related functions, Trans. Amer. Math. Soc. 39, 1-17 (1936)
  • [12] H. F. Weinberger, A First Course in Partial Differential Equations with Complex Variables and Transform Methods, Wiley, New York, 1965 MR 0180739

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35P15, 35J05, 73H05, 73K15

Retrieve articles in all journals with MSC: 35P15, 35J05, 73H05, 73K15

Additional Information

DOI: https://doi.org/10.1090/qam/1074972
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society