An internal variable finite-strain theory of plasticity within the framework of convex analysis

Authors:
R. A. Eve, T. Gültop and B. D. Reddy

Journal:
Quart. Appl. Math. **48** (1990), 625-643

MSC:
Primary 73G20; Secondary 73E05, 73S10

DOI:
https://doi.org/10.1090/qam/1079910

MathSciNet review:
MR1079910

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An internal variable constitutive theory for elastic-plastic materials undergoing finite strains is presented. The theory is based on a corresponding study in the context of small strains [6], and has the following features: first, with a view to embracing the classical notions of convex yield surfaces and the normality law, the evolution law is developed within the framework of nonsmooth convex analysis, which proves to be a powerful unifying tool; secondly, the special case of elastic materials is recovered from the theory in a natural manner. After presentation of the theory a concrete example is discussed in detail.

**[1]**Stuart S. Antman and William G. Szymczak,*Nonlinear elastoplastic waves*, Current progress in hyperbolic systems: Riemann problems and computations (Brunswick, ME, 1988) Contemp. Math., vol. 100, Amer. Math. Soc., Providence, RI, 1989, pp. 27–54. MR**1033507**, https://doi.org/10.1090/conm/100/1033507**[2]**John M. Ball,*Convexity conditions and existence theorems in nonlinear elasticity*, Arch. Rational Mech. Anal.**63**(1976/77), no. 4, 337–403. MR**0475169**, https://doi.org/10.1007/BF00279992**[3]**Philippe G. Ciarlet,*Mathematical elasticity. Vol. I*, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity. MR**936420****[4]**Philippe G. Ciarlet and Giuseppe Geymonat,*Sur les lois de comportement en élasticité non linéaire compressible*, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre**295**(1982), no. 4, 423–426 (French, with English summary). MR**695540****[5]**B. D. Coleman and M. E. Gurtin,*Thermodynamics with internal state variables*, J. Chem. Phys.**47**, 597-613 (1967)**[6]**R. A. Eve, B. D. Reddy, and R. T. Rockafellar,*An internal variable theory of elastoplasticity based on the maximum plastic work inequality*, Quart. Appl. Math.**48**(1990), no. 1, 59–83. MR**1040234**, https://doi.org/10.1090/qam/1040234**[7]**A. E. Green and P. M. Naghdi,*A general theory of an elastic-plastic continuum*, Arch. Rational Mech. Anal.**18**(1965), no. 4, 251–281. MR**1553473**, https://doi.org/10.1007/BF00251666**[8]**Bernard Halphen and Nguyen Quoc Son,*Sur les matériaux standards généralisés*, J. Mécanique**14**(1975), 39–63 (French, with English summary). MR**0416177****[9]**R. Hill,*The essential structure of constitutive laws for metal composites and polycrystals*, J. Mech. Phys. Solids**15**, 79-95 (1967)**[10]**R. Hill,*On constitutive inequalities for simple materials*. II, J. Mech. Phys. Solids**16**, 315-322 (1968)**[11]**R. Hill and J. R. Rice,*Elastic potentials and the structure of inelastic constitutive laws*, SIAM J. Appl. Math.**25**, 448-461 (1973)**[12]**J. W. Hutchinson,*Finite strain analysis of elastic-plastic solids and structures*, Numerical Solution of Nonlinear Structural Problems (ed. R. F. Hartung), Amer. Soc. Mech. Eng., New York, pp. 17-29 1973**[13]**J. Kestin and J. R. Rice,*Paradoxes in the application of thermodynamics to strained solids*, A Critical Review of Thermodynamics (ed. E. B. Stuart), Mono Book Corp., Baltimore, 1970. pp. 275-298**[14]**S. J. Kim and J. T. Oden,*Generalized potentials in finite elastoplasticity*, Internat. J. Engrg. Sci.**22**(1984), no. 11-12, 1235–1257. MR**769970**, https://doi.org/10.1016/0020-7225(84)90019-3**[15]**S. J. Kim and J. T. Oden,*Generalized flow potentials in finite elastoplasticity. II. Examples*, Internat. J. Engrg. Sci.**23**(1985), no. 5, 515–530. MR**792727**, https://doi.org/10.1016/0020-7225(85)90061-8**[16]**S. J. Kim and J. T. Oden,*Finite element analysis of a class of problems in finite elastoplasticity based on the thermodynamical theory of materials of type 𝑁*, Comput. Methods Appl. Mech. Engrg.**53**(1985), no. 3, 277–302. MR**820832**, https://doi.org/10.1016/0045-7825(85)90119-7**[17]**E. H. Lee,*Elastic-plastic deformations at finite strains*, J. Appl. Mech.**36**, 1-6 (1969)**[18]**J. Mandel,*Thermodynamics and plasticity*, Foundations of Continuum Thermodynamics (ed. J. J. Delgado Domingos, M. N. R. Nina, and J. H. Whitelaw), Macmillan, 1974, pp. 283-304**[19]**J. B. Martin,*An internal variable approach to the formulation of finite element problems in plasticity*, Physical Nonlinearities in Structural Analysis (ed. J. Hult and J. Lemaitre), Springer, Berlin, 1981, pp. 165-176**[20]**J. B. Martin and B. D. Reddy,*Variational principles and solution algorithms for internal variable formulations of problems in plasticity*, Omaggio a Giulio Ceradini: Note Scientifiche in Occasione del Compleanno (ed. U. Andreaus et al.), Università di Roma 'La Sapienza', Roma, 1988, pp. 465-477**[21]**J. B. Martin, B. D. Reddy, T. B. Griffin, and W. W. Bird,*Application of mathematical programming concepts to incremental elastic-plastic analysis*, Engrg. Struct.**9**, 171-176 (1987)**[22]**B. Moran, M. Ortiz, and C. F. Shih,*Formulation of implicit finite element methods for multiplicative finite deformation plasticity*, Internat. J. Numer. Methods Engrg.**29**(1990), no. 3, 483–514. MR**1040734**, https://doi.org/10.1002/nme.1620290304**[23]**J. J. Moreau,*Sur les lois de frottement, de viscosité et plasticité*, C. R. Acad. Sci**271**, 608-611 (1970)**[24]**A. Needleman,*On finite element formulations for large elastic-plastic deformations*, Comp. Struct.**20**, 247-257 (1985)**[25]**B. D. Reddy and T. B. Griffin,*Variational principles and convergence of finite element approximations of a holonomic elastic-plastic problem*, Numer. Math.**52**(1988), no. 1, 101–117. MR**918319**, https://doi.org/10.1007/BF01401024**[26]**B. D. Reddy and F. Tomarelli,*The obstacle problem for an elastoplastic body*, Appl. Math. Optim.**21**(1990), no. 1, 89–110. MR**1014947**, https://doi.org/10.1007/BF01445159**[27]**J. R. Rice,*Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity*, J. Mech. Phys. Solids**19**, 433-455 (1971)**[28]**R. Tyrrell Rockafellar,*Convex analysis*, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR**0274683****[29]**J. C. Simo,*A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. I. Continuum formulation*, Comput. Methods Appl. Mech. Engrg.**66**(1988), no. 2, 199–219. MR**927418**, https://doi.org/10.1016/0045-7825(88)90076-X**[30]**J. C. Simo and M. Ortiz,*A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations*, Comput. Methods Appl. Mech. Engrg.**49**, 222-235 (1985)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73G20,
73E05,
73S10

Retrieve articles in all journals with MSC: 73G20, 73E05, 73S10

Additional Information

DOI:
https://doi.org/10.1090/qam/1079910

Article copyright:
© Copyright 1990
American Mathematical Society