An internal variable finite-strain theory of plasticity within the framework of convex analysis

Authors:
R. A. Eve, T. Gültop and B. D. Reddy

Journal:
Quart. Appl. Math. **48** (1990), 625-643

MSC:
Primary 73G20; Secondary 73E05, 73S10

DOI:
https://doi.org/10.1090/qam/1079910

MathSciNet review:
MR1079910

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An internal variable constitutive theory for elastic-plastic materials undergoing finite strains is presented. The theory is based on a corresponding study in the context of small strains [6], and has the following features: first, with a view to embracing the classical notions of convex yield surfaces and the normality law, the evolution law is developed within the framework of nonsmooth convex analysis, which proves to be a powerful unifying tool; secondly, the special case of elastic materials is recovered from the theory in a natural manner. After presentation of the theory a concrete example is discussed in detail.

**[1]**S. S. Antman and W. G. Szymczak,*Nonlinear elastoplastic waves*, Contemp. Math.**100**, 27-54 (1989) MR**1033507****[2]**J. M. Ball,*Convexity conditions and existence theorems in nonlinear elasticity*, Arch. Rational Mech. Anal.**63**, 337-406 (1977) MR**0475169****[3]**P. G. Ciarlet,*Mathematical Elasticity, Volume I: Three-dimensional Elasticity*, North-Holland, Amsterdam, 1988 MR**936420****[4]**P. G. Ciarlet and G. Geymonat,*Sur les lois de comportement en élasticité nonlinéaire compressible*, C. R. Acad. Sci. Paris Sér. II**295**, 423-426 (1982) MR**695540****[5]**B. D. Coleman and M. E. Gurtin,*Thermodynamics with internal state variables*, J. Chem. Phys.**47**, 597-613 (1967)**[6]**R. A. Eve, B. D. Reddy, and R. T. Rockafellar,*An internal variable theory of elastoplasticity based on the maximum plastic work inequality*, Quart. Appl. Math.**48**, 59-83 (1990) MR**1040234****[7]**A. E. Green and P. M. Naghdi,*A general theory of an elastic-plastic continuum*, Arch. Rational Mech. Anal.**18**, 251-281 (1965) MR**1553473****[8]**B. Halphen and Q. S. Nguyen,*Sur les matériaux standards généralisés*, J. Méc.**14**, 39-63 (1975) MR**0416177****[9]**R. Hill,*The essential structure of constitutive laws for metal composites and polycrystals*, J. Mech. Phys. Solids**15**, 79-95 (1967)**[10]**R. Hill,*On constitutive inequalities for simple materials*. II, J. Mech. Phys. Solids**16**, 315-322 (1968)**[11]**R. Hill and J. R. Rice,*Elastic potentials and the structure of inelastic constitutive laws*, SIAM J. Appl. Math.**25**, 448-461 (1973)**[12]**J. W. Hutchinson,*Finite strain analysis of elastic-plastic solids and structures*, Numerical Solution of Nonlinear Structural Problems (ed. R. F. Hartung), Amer. Soc. Mech. Eng., New York, pp. 17-29 1973**[13]**J. Kestin and J. R. Rice,*Paradoxes in the application of thermodynamics to strained solids*, A Critical Review of Thermodynamics (ed. E. B. Stuart), Mono Book Corp., Baltimore, 1970. pp. 275-298**[14]**S. J. Kim and J. T. Oden,*Generalized potentials in finite elastoplasticity*, Internat. J. Engrg. Sci.**22**, 1235-1257 (1984) MR**769970****[15]**S. J. Kim and J. T. Oden.*Generalized potentials in finite elastoplasticity*, II.*Example*, Internat. J. Engrg. Sci.**23**, 510-530 (1985) MR**792727****[16]**S. J. Kim and J. T. Oden,*Finite element analysis of a class of problems in finite elastoplasticity based on the thermodynamical theory of materials of type N*, Comput. Methods Appl. Mech. Engrg.**53**, 277-302 (1985) MR**820832****[17]**E. H. Lee,*Elastic-plastic deformations at finite strains*, J. Appl. Mech.**36**, 1-6 (1969)**[18]**J. Mandel,*Thermodynamics and plasticity*, Foundations of Continuum Thermodynamics (ed. J. J. Delgado Domingos, M. N. R. Nina, and J. H. Whitelaw), Macmillan, 1974, pp. 283-304**[19]**J. B. Martin,*An internal variable approach to the formulation of finite element problems in plasticity*, Physical Nonlinearities in Structural Analysis (ed. J. Hult and J. Lemaitre), Springer, Berlin, 1981, pp. 165-176**[20]**J. B. Martin and B. D. Reddy,*Variational principles and solution algorithms for internal variable formulations of problems in plasticity*, Omaggio a Giulio Ceradini: Note Scientifiche in Occasione del Compleanno (ed. U. Andreaus et al.), Università di Roma 'La Sapienza', Roma, 1988, pp. 465-477**[21]**J. B. Martin, B. D. Reddy, T. B. Griffin, and W. W. Bird,*Application of mathematical programming concepts to incremental elastic-plastic analysis*, Engrg. Struct.**9**, 171-176 (1987)**[22]**B. Moran, M. Ortiz, and C. F. Shih,*Formulation of implicit finite element methods for multiplicative finite deformation plasticity*, Technical Report, Division of Engineering, Brown Univ., 1989 MR**1040734****[23]**J. J. Moreau,*Sur les lois de frottement, de viscosité et plasticité*, C. R. Acad. Sci**271**, 608-611 (1970)**[24]**A. Needleman,*On finite element formulations for large elastic-plastic deformations*, Comp. Struct.**20**, 247-257 (1985)**[25]**B. D. Reddy and T. B. Griffin,*Variational principles and convergence of finite element approximations of a holonomic elastic-plastic problem*, Numer. Math.**52**, 101-117 (1988) MR**918319****[26]**B. D. Reddy and F. Tomarelli,*The obstacle problem for an elastic-plastic body*, Appl. Math. Optim.**21**, 89-110 (1990) MR**1014947****[27]**J. R. Rice,*Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity*, J. Mech. Phys. Solids**19**, 433-455 (1971)**[28]**R. T. Rockafellar,*Convex Analysis*, Princeton University Press, New Jersey, 1970 MR**0274683****[29]**J. C. Simo,*A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation*, Comput. Methods Appl. Mech. Engrg.**66**, 199-219 (1988) MR**927418****[30]**J. C. Simo and M. Ortiz,*A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations*, Comput. Methods Appl. Mech. Engrg.**49**, 222-235 (1985)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73G20,
73E05,
73S10

Retrieve articles in all journals with MSC: 73G20, 73E05, 73S10

Additional Information

DOI:
https://doi.org/10.1090/qam/1079910

Article copyright:
© Copyright 1990
American Mathematical Society