Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Equipartition of energy in linearized $ 3$-D viscoelasticity

Authors: George Dassios and Filareti Zafiropoulos
Journal: Quart. Appl. Math. 48 (1990), 715-730
MSC: Primary 73F15; Secondary 35B40, 35C15, 73B30, 73D99
DOI: https://doi.org/10.1090/qam/1079915
MathSciNet review: MR1079915
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A regular and compactly supported initial disturbance propagates in a homogeneous isotropic and linearized viscoelastic medium. The elasticities of the medium exhibit a simple exponential decay in time. General expressions for the energies are obtained and the decay and equipartition of the kinetic and strain energies, for both the longitudinal as well as the transverse wave, are demonstrated.

References [Enhancements On Off] (What's this?)

  • [1] A. Bachelot, Équipartition de l'Energie pour les Systèmes Hyperboliques et Formes Compatibles, Ann. Inst. Henri Poincaré 46, 45-76 (1987) MR 877995
  • [2] R. A. Brodsky, On the asymptotic behaviour of solutions of the wave equation, Proc. Amer. Math. Soc. 18, 207-208 (1967) MR 0212417
  • [3] R. M. Christensen, Theory of Viscoelasticity. An Introduction, Academic Press, New York, 1982
  • [4] B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev. Modern Phys. 33, 239-249 (1961) MR 0158605
  • [5] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37, 297-308 (1970) MR 0281400
  • [6] G. Dassios, Equipartition of energy in elastic wave propagation, Mech. Res Comm. 6, 45-50 (1979) MR 524233
  • [7] G. Dassios and M. Grillakis, Dissipation rates and partition of energy in thermoelasticity, Arch. Rational Mech. Anal. 87, 49-91 (1984) MR 760319
  • [8] G. Dassios and M. Grillakis, Asymptotic equipartition rate for wave motion in an even number of space dimensions, J. Math. Anal. Appl. 120, 44-52 (1986) MR 861907
  • [9] W. A. Day, The decay of the energy in a viscoelastic body, Mathematica 27, 268-286 (1980) MR 610712
  • [10] R. J. Duffin, Equipartition of energy in wave motion, J. Math. Anal. Appl. 32, 386-391 (1970) MR 0269190
  • [11] A. C. Eringen, Continuum Physics II, Academic Press, New York, 1975 MR 0468444
  • [12] J. A. Goldstein, An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc. 23, 359-363 (1969) MR 0250125
  • [13] J. A. Goldstein, A (More-or-Less) Complete Bibliography of Semigroups of Operators Through 1984, Publication of Tulane University, New Orleans, 1984
  • [14] M. E. Gurtin and E. Sternberg, On the linear theory of viscoelasticity, Arch. Rational. Mech. Anal. 11, 291-356 (1962) MR 0147047
  • [15] B. Hanouzet, Applications Bilinéaires Compatibles avec un Système à Coefficients Variables. Continuité dans les Espaces de Besov, Comm. Partial Differential Equations 10, 433-465 (1985) MR 784684
  • [16] F. John, Partial Differential Equations, 4th edition, Springer-Verlag, New York, 1982
  • [17] P. Lax and R. Phillips, Scattering Theory, Academic Press, New York, 1967 MR 0217440
  • [18] M. J. Leitman, The Linear Theory of Viscoelasticity, Handbuch der Physik (S. Flügge, Ed.), Springer-Verlag, Berlin, 1973
  • [19] D. W. Reynolds, On the equipartition of energy in a linear viscoelastic body, Quart. Appl. Math. 41, 325-336 (1984) MR 757171
  • [20] J. V. Uspensky, Theory of Equations, McGraw-Hill, New York, 1948

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73F15, 35B40, 35C15, 73B30, 73D99

Retrieve articles in all journals with MSC: 73F15, 35B40, 35C15, 73B30, 73D99

Additional Information

DOI: https://doi.org/10.1090/qam/1079915
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society