Finite strain solutions for a compressible elastic solid

Authors:
M. M. Carroll and C. O. Horgan

Journal:
Quart. Appl. Math. **48** (1990), 767-780

MSC:
Primary 73G05

DOI:
https://doi.org/10.1090/qam/1079919

MathSciNet review:
MR1079919

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several closed form finite strain equilibrium solutions are presented for a special compressible isotropic elastic material which was proposed as a model for foam rubber by Blatz and Ko. These solutions include bending of a cylindrical sector into another sector or a rectangular block, bending of a block into a sector, expansion, compaction or eversion of cylinders or spheres, and torsion and extension of circular cylinders or tubes.

**[1]**J. L. Ericksen,*Deformations possible in every isotropic, incompressible, perfectly elastic body*, Z. Angew. Math. Phys.**5**, 466-489 (1954) MR**0066873****[2]**J. L. Ericksen,*Deformations possible in every compressible, isotropic, perfectly elastic material*, J. Math. and Phys.**34**, 126-128 (1955) MR**0070397****[3]**M. Singh and A. C. Pipkin,*Note on Ericksen's problem*, Z. Angew. Math. Phys.**16**, 706-709 (1965)**[4]**P. K. Currie and M. Hayes,*On non-universal finite elastic deformations*, Finite Elasticity, Proceedings of IUTAM Symposium (D. E. Carlson and R. T. Shield, eds.), Martinus Nijhoff, The Hague, 1982, pp. 143-150 MR**676658****[5]**F. John,*Plane strain problems for a perfectly elastic material of harmonic type*, Comm. Pure Appl. Math.**13**, 239-296 (1960) MR**0118022****[6]**R. W. Ogden and D. A. Isherwood,*Solution of some finite plane-strain problems for compressible elastic solids*, Quart. J. Mech. Appl. Math.**31**, 219-249 (1978) MR**0489206****[7]**E. Varley and E. Cumberbatch,*Finite deformations of elastic materials surrounding cylindrical holes*, J. Elasticity**10**, 341-405 (1980)**[8]**C. H. Wu,*Plane-strain buckling of a crack in a harmonic solid subjected to crack-parallel compression*, J. Appl. Mech.**46**, 597-604 (1979)**[9]**A. H. Jafari, R. Abeyaratne, and C. O. Horgan,*The finite deformation of a pressurized circular tube for a class of compressible materials*, Z. Angew. Math. Phys.**35**, 227-246 (1984) MR**756407****[10]**R. W. Ogden,*Non-linear Elastic Deformations*, Ellis Horwood, Chichester, 1984**[11]**R. Abeyaratne and C. O. Horgan,*The pressurized hollow sphere problem in finite elastostatics for a class of compressible materials*, Int. J. Solids Struct.**20**, 715-723 (1984) MR**768646****[12]**L. T. Wheeler,*Finite deformation of a harmonic elastic medium containing an ellipsoidal cavity*, Internat. J. Solids Struct.**21**, 799-804 (1985)**[13]**D. T. Chung, C. O. Horgan, and R. Abeyaratne,*The finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible elastic materials*, Internat. J. Solids Struct.**22**, 1557-1570 (1986)**[14]**P. J. Blatz and W. L. Ko,*Application of finite elasticity to the deformation of rubbery materials*, Trans. Soc. Rheol.**6**, 223-251 (1962)**[15]**M. F. Beatty,*Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-- with examples*, Appl. Mech. Reviews**40**, 1699-1734 (1987)**[16]**M. M. Carroll,*Finite strain solutions in compressible isotropic elasticity*, J. Elasticity**20**, 65-92 (1988) MR**962367****[17]**D. M. Haughton,*Inflation of thick-walled compressible elastic spherical shells*, IMA J. Appl. Math.**39**, 259-272 (1987) MR**983745****[18]**C. O. Horgan,*Some remarks on axisymmetric solutions in finite elastostatics for compressible materials*, Proc. Roy. Irish Acad. Sect. A**89**, 185-193 (1989) MR**1051392****[19]**J. K. Knowles and E. Sternberg,*On the ellipticity of the equations of nonlinear elastostatics for a special material*, J. Elasticity**5**, 341-361 (1975) MR**0475115**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73G05

Retrieve articles in all journals with MSC: 73G05

Additional Information

DOI:
https://doi.org/10.1090/qam/1079919

Article copyright:
© Copyright 1990
American Mathematical Society