Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Self-induced motion of line defects


Author: Jacob Rubinstein
Journal: Quart. Appl. Math. 49 (1991), 1-9
MSC: Primary 73B99; Secondary 35Q55, 76A99
DOI: https://doi.org/10.1090/qam/1096227
MathSciNet review: MR1096227
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The evolution of the 2-d Ginzburg-Landau functional under the Schrodinger and the diffusion dynamics is considered. We construct solutions $ u\left( {x, t} \right), u \in {R^2}, x \in {R^3}$, such that the vector field $ u$ vanishes along a singular curve $ \gamma $. Equations of motion for $ \gamma \left( t \right)$ are derived by the method of matched asymptotic expansions.


References [Enhancements On Off] (What's this?)

  • [1] G. K. Batchelor, An Introduction to Fluid Mechanics, Cambridge University Press, 1967 MR 622931
  • [2] S. Chandrasckhar, Liquid Crystals, Cambridge University Press, 1977
  • [3] M. C. Cross and A. C. Newell, Convection patterns in large aspect ratio systems, Physica 10D, 299-328 (1984) MR 763474
  • [4] R. Feynmann, Statistical Mechanics, Benjamin, New York, 1972
  • [5] G. W. 't Hooft, Magnetic monopoles in unified gauge theories, Nuclear Phys. B79, 276-284 (1974) MR 0413809
  • [6] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer-Verlag, 1984 MR 762432
  • [7] L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, 1980 MR 586944
  • [8] J. Neu, Vortices in complex scalar fields, Physica D (to appear) MR 1067918
  • [9] J. Rubinstein, P. Sternberg, and J. B. Keller, Fast reaction, slow diffusion and curve shortening, SIAM J. Appl. Math. 49, 116-133 (1989) MR 978829
  • [10] L. Pismen and J. Rubinstein, Motion of vortex lines in the Ginzbung-Landau model, Physica D (to appear) MR 1098255
  • [11] J. Rubinstein, P. Sternberg, and J. B. Keller, Reaction diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math. 49, 1722-1733 (1989) MR 1025956

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73B99, 35Q55, 76A99

Retrieve articles in all journals with MSC: 73B99, 35Q55, 76A99


Additional Information

DOI: https://doi.org/10.1090/qam/1096227
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society