Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Anticrowding population models in several space variables


Author: Gastón E. Hernández
Journal: Quart. Appl. Math. 49 (1991), 87-105
MSC: Primary 92D25; Secondary 35K55
DOI: https://doi.org/10.1090/qam/1096234
MathSciNet review: MR1096234
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] D. G. Aronson, The porous medium equation, CIME Lectures Montecatini Terme, 10-18 (June 1985) MR 877986
  • [2] D. G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl. Math. 17 461-467 (1969) MR 0247303
  • [3] D. G. Aronson, Regularity properties of flows through porous media: a counterexample, SIAM J. Appl. Math. 19, 299-307 (1970) MR 0265774
  • [4] Ph. Benilam, A strong regularity Lp for solutions of the porous media equations, Contributions to Nonlinear Partial Differential Equations, C. Bardos, A. Damlamian, J. I. Diaz and J. Hernandez, Editors, London, 1983, pp. 39-58
  • [5] L. A. Caffarelli and A. Friedman, Continuity of the density of a gas flow in a porous medium, Trans. Amer. Math. Soc. 252, 99-113 (1979) MR 534112
  • [6] L. A. Caffarelli and A. Friedman, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Indiana Univ. Math. J. 29, 361-391 (1980) MR 570687
  • [7] E. A. Carl, Population control in arctic ground squirrels, Ecology 52, 395-413 (1971)
  • [8] D. G. Aronson and L. A. Caffarelli, Optimal regularity for one-dimensional porous medium flow, Rev. Math. Iberoamericana 2, 357-366 (1986) MR 913692
  • [9] Gabriella Di Blasio, Nonlinear age-dependent population diffusion, J. Math. Biology 8, 265-284 (1979) MR 657285
  • [10] E. di Benedetto, Continuity of weak solutions to a general Porous medium equation, Indiana Univ. Math. J. 32, 83-118 (1983) MR 684758
  • [11] Maria Garroni and Michel Langlais, Age dependent population diffusion with external constraints, J. Math. Biol. 14, 77-94 (1982) MR 666005
  • [12] W. S. C. Gurney and R. M. Nibset, The regulation of inhomogeneous populations, J. Theoretical Biology 52, 441-457 (1975)
  • [13] M. E. Gurtin, Some questions and open problems in continuum mechanics and population dynamics, J. Differential Equations 48, 293-312 (1983) MR 696872
  • [14] M. E. Gurtin and R. C. MacCamy, Diffusion models for age-structured populations, Math. Biosciences 54, 49-59 (1981) MR 630655
  • [15] M. E. Gurtin and R. C. MacCamy, Nonlinear age-dependent population dynamics, Arch. Rational Mech. Anal. 54, 281-300 (1974) MR 0354068
  • [16] M. E. Gurtin and R. C. MacCamy, On the diffusion of biological populations, Math. Biosciences 33, 35-49 (1977) MR 0682594
  • [17] M. E. Gurtin and R. C. MacCamy, A population model with nonlinear diffusion, J. Differential Equations 39, 52-72 (1981) MR 602431
  • [18] M. E. Gurtin and R. C. MacCamy, Some simple models for nonlinear age dependence population dynamics, Math. Biosciences 43, 199-211 (1979) MR 527566
  • [19] Gaston E. Hernandez, Dynamics of populations with age dependence and diffusion: localization, Appl. Anal. 29, 143-163 (1988) MR 960582
  • [20] Gaston E. Hernandez, Existence of solutions in a population dynamic problem, Quart. Appl. Math. 43, 509-521 (1986) MR 846161
  • [21] Gaston E. Hernandez, The Hölder property in some degenerate parabolic problems, J. Differential Equations 65, 240-249 (1986) MR 861519
  • [22] Gaston E. Hernandez and Ioannis Roussos, The Hölder exponent for radially symmetric solutions of porous medium type equations, to appear, in Canad. J. Math., 1990. MR 1113756
  • [23] A. S. Kalashnikov, On the occurrence of singularities in the solutions of the equation of nonstationary filtration, Zh. Vychisl. Mat. i Mat. Fiz. 14, 891-905 (1974)
  • [24] Michel Langlais, A nonlinear problem in age dependent population diffusion, Preprint, 1983 MR 783977
  • [25] O. A. Oleinik and S. N. Kruzhkov, Quasilinear second order parabolic equations with many independent variables, Russian Math. Surveys, 16, 106-146 (1961)
  • [26] L. A. Peletier, The porous media equation, Applications of Nonlinear Analysis in the physical Sciences, H. Amann et al. editors, Pitman, London, 1981, pp. 229-241 MR 659697
  • [27] Paul Sacks, Existence and regularity of solutions of inhomogeneous porous medium type equations, T.S.R. No. 2214 M.R.C. Madison, Wisconsin, 1985
  • [28] J. G. Skellam, Random dispersal in theoretical populations, Biometrika 38, 196-218 (1951) MR 0043440
  • [29] J. L. Vazquez, La ecuacion de los medios porosos., Actas 1ra Jornadas de Mecanica y Fisica Matematicas, El Escorial, Sept. 1983

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 92D25, 35K55

Retrieve articles in all journals with MSC: 92D25, 35K55


Additional Information

DOI: https://doi.org/10.1090/qam/1096234
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society