Applications of generalized stress in elastodynamics

Author:
Douglas B. Meade

Journal:
Quart. Appl. Math. **49** (1991), 121-145

MSC:
Primary 73D25; Secondary 65N30, 65N38, 73C99, 73V05

DOI:
https://doi.org/10.1090/qam/1096236

MathSciNet review:
MR1096236

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem under consideration is the scattering of elastic waves by inhomogeneous obstacles. The main goal is to obtain approximation techniques which are amenable to numerical implementation. For time-periodic problems a coupling procedure involving finite elements and boundary integral equations is described. For general time-dependent problems, artificial boundary methods are studied. In both cases the concept of generalized stress, as originated by Kupradze, plays a central role. The analysis is restricted to planar two-dimensional problems since these illustrate the essential ideas.

**[1]**G. A. Baker,*Error estimates for finite element methods for second order hyperbolic equations*, SIAM J. Numer. Anal.**13**, 564-576 (1976) MR**0423836****[2]**A. Barry, J. Bielak, and R. C. MacCamy,*On absorbing boundary conditions for wave propagation*, J. Comput. Phys.**79**, 449-468 (1988) MR**973337****[3]**J. Bielak and R. C. MacCamy,*An exterior interface problem in two-dimensional elastodynamics*, Quart. Appl. Math.**41**, 143-159 (1983) MR**700668****[4]**R. Clayton and B. Engquist,*Absorbing boundary conditions for acoustic and elastic wave equations*, Bull. Seismol. Soc. Amer.**67**, 1529-1540 (1977)**[5]**M. Costabel and E. P. Stephan,*Integral equations for transmission problems in linear elasticity*, J. Integral Equations Appl.**2**, 221-223 (1990) MR**1045769****[6]**M. Costabel and E. P. Stephan,*On the convergence of collocation methods for boundary integral equations on polygons*, Math. Comp.**49**, 461-478 (1987) MR**906182****[7]**R. Courant and D. Hilbert,*Methods of Mathematical Physics*, v. II, Interscience, 1966 MR**0195654****[8]**T. DuPont,*-estimates for Galerkin methods for second order hyperbolic equations*, SIAM J. Numer. Anal.**10**, 880-889 (1973) MR**0349045****[9]**G. Duvaut and J. L. Lions,*Inequalities in Mechanics and Physics*, Springer-Verlag, New York-Heidelberg-Berlin, 1976 (translated from the French by C. W. John) MR**0521262****[10]**S. Emerman and R. A. Stephan,*Comment on ``Absorbing boundary conditions for acoustic and elastic wave equations'' by R. Clayton and B. Engquist*, Bull. Seismol. Soc. Amer.**73**, 661-665 (1983)**[11]**B. Engquist and A. Majda,*Absorbing boundary conditions for the numerical solution of waves*, Math. Comp.**31**, 639-651 (1977) MR**0436612****[12]**B. Engquist and A. Majda,*Radiation boundary conditions for acoustic and elastic wave calculations*, Comm. Pure Appl. Math.**32**, 313-357 (1979) MR**517938****[13]**D. E. Gray, ed.,*American Institute of Physics Handbook*, McGraw-Hill, New York, NY, 1972 MR**0095765****[14]**M. E. Gurtin,*The linear theory of elasticity*, Handbuch der Physik v. VIa/2, Springer-Verlag, New York-Heidelberg-Berlin, 1972**[15]**G. Hellwig,*Partial Differential Equations*, Blaisdell Press, 1964**[16]**R. L. Higdon,*Numerical absorbing boundary conditions for the wave equation*, Math. Comp.**49**, 65-90 (1987) MR**890254****[17]**S. Hildebrandt and E. Wienholtz,*Constructive proofs of representation theorems in separable Hilbert space*, Comm. Pure Appl. Math.**17**, 369-373 (1964) MR**0166608****[18]**G. C. Hsaio and W. L. Wendland,*A finite element method for some integral equations of the first kind*, J. Math. Anal. Appl.**58**, 449-481 (1977) MR**0461963****[19]**M. Kitahara,*Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates*, Elsevier, Amsterdam-New York, 1985 MR**798471****[20]**V. D. Kupradze,*Potential Methods in the Theory of Elasticity*, Israel Program for Scientific Translations, 1965 MR**0223128****[21]**D. B. Meade,*Interface Problems in Elastodynamics*, Carnegie Mellon University, Ph. D. Thesis, 1989 MR**2637397****[22]**E. Sternberg,*On the integration of the equations of motion in the classical theory of elasticity*, Arch. Rational Mech. Anal.**6**, 34-50 (1960) MR**0119547**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73D25,
65N30,
65N38,
73C99,
73V05

Retrieve articles in all journals with MSC: 73D25, 65N30, 65N38, 73C99, 73V05

Additional Information

DOI:
https://doi.org/10.1090/qam/1096236

Article copyright:
© Copyright 1991
American Mathematical Society