Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Multipolar viscous fluids

Authors: J. Nečas and M. Šilhavý
Journal: Quart. Appl. Math. 49 (1991), 247-265
MSC: Primary 76A05; Secondary 73B05, 73B25
DOI: https://doi.org/10.1090/qam/1106391
MathSciNet review: MR1106391
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of the paper is to develop a thermodynamic theory of constitutive equations of multipolar viscous fluids. The restrictions which the principle of material frame-indifference and the Clausius-Duhem inequality place on the constitutive equations are derived. Explicit forms of the viscous stresses are obtained for linear viscous fluids.

References [Enhancements On Off] (What's this?)

  • [1] J. Nečas, A. Novotný, and M. Šilhavý, Global solution to the ideal compressible heat conductive multipolar fluid, Comment. Math. Univ. Carolinae 30, 551-564 (1989) MR 1031872
  • [2] J. Nečas and M. Růžička, Global solution to the incompressible viscous-multipolar material, to appear
  • [3] A. E. Green and R. S. Rivlin, Simple force and stress multipoles, Arch. Rational Mech. Anal. 16, 325-353 (1964) MR 0182191
  • [4] A. E. Green and R. S. Rivlin, Multipolar continuum mechanics, Arch. Rational Mech. Anal. 17, 113-147 (1964) MR 0182192
  • [5] K. Bucháček, Thermodynamics of monopolar continuum of grade n, Apl. Mat. 16, 370-383 (1971) MR 0290662
  • [6] W. Noll, A mathematical theory of behavior of continuous media, Arch. Rational Mech. Anal. 2, 119-226 (1957) MR 0105862
  • [7] J. J. Cross, Mixtures of fluids and isotropic solids, Arch. Mech. 25, 1025-1039 (1973) MR 0366181
  • [8] I. Samohýl, Symmetry groups in the mass conserving, second grade materials, Arch. Mech. 33, 983-987 (1981)
  • [9] M. E. Gurtin, M. Vianello, and W. O. Williams, On fluids of grade n, Meccanica--J. Ital. Assoc. Theoret. Appl. Mech. 21, 179-181 (1986) MR 885639
  • [10] C. Truesdell and W. Noll, The Non-linear Field Theories of Mechanics, Handbuch der Physik III/3 (ed. by S. Flügge), Springer, Berlin-Heidelberg-New York, 1965 MR 0193816
  • [11] C. Truesdell, A First Course in Rational Continuum Mechanics, The Johns Hopkins University, Baltimore, 1972
  • [12] B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal. 13, 167-178 (1963) MR 0153153
  • [13] A. J. M. Spencer, Theory of invariants, Continuum Physics, vol. I (ed. by A. C. Eringen), Academic Press, New York, 1971

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76A05, 73B05, 73B25

Retrieve articles in all journals with MSC: 76A05, 73B05, 73B25

Additional Information

DOI: https://doi.org/10.1090/qam/1106391
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society