Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Foundations of Hankel transform algorithms


Author: Bruce W. Suter
Journal: Quart. Appl. Math. 49 (1991), 267-279
MSC: Primary 65R10; Secondary 44A15
DOI: https://doi.org/10.1090/qam/1106392
MathSciNet review: MR1106392
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A brief survey of existing Hankel (Fourier-Bessel) transform algorithms is presented along with a natural way to classify these algorithms. In several cases these algorithms were derived originally by methods that were unnecessarily complicated and not sufficiently general. By using operator notation and Radon transform methods, derivations and generalizations are straightforward. These improvements and generalizations are given at the appropriate places in the discussion.


References [Enhancements On Off] (What's this?)

  • [1] W. L. Anderson, Numerical integration of related Hankel transforms of orders 0 and 1 by adaptive digital filtering, Geophysics 44, 1287-1305 (1979)
  • [2] W. L. Anderson, Fast Hankel transforms using related and lagged convolutions, ACM Trans. Math. Software 8, 344-368 (1982)
  • [3] W. L. Anderson, Algorithm 558 : Fast Hankel transforms using related and lagged convolutions, ACM Trans. Math. Software 8, 369-370 (1982)
  • [4] W. L. Anderson, Computation of Green's tensor integral for three-dimensional electromagnetic problems using fast Hankel transforms, Geophysics 49, 1754-1759 (1984)
  • [5] G. Arfken, Mathematical Methods for Physicists, Second Edition, Academic Press, New York, 1970 MR 0205512
  • [6] H. H. Barrett, The Radon transform and its applications, E. Wolf (editor), Progress in Optics, North Holland, Amsterdam, Holland, 21 219-286 (1984)
  • [7] R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, 1978 MR 549484
  • [8] S. M. Candel, An algorithm for the Fourier-Bessel transform, Comput. Phys. Comm. 23, 343-353 (1981) MR 628681
  • [9] S. M. Candel, Dual algorithms for the fast computation of the Fourier-Bessel transform, IEEE Trans. Acoust. Speech Signal Process. 29, 963-972 (1981) MR 629032
  • [10] S. M. Candel, Simultaneous calculation of Fourier-Bessel transforms up to order N , J. Comput. Phys. 44, 243-261 (1981) MR 645838
  • [11] E. Cavanaugh and B. D. Cook, Numerical evaluation of Hankel transforms via Gaussian-Laguerre polynomial expansions, IEEE Trans. Acoust. Speech Signal Process. 27, 361-366 (1979)
  • [12] A. D. Chave, Numerical integration of related Hankel transforms by quadrature and continued fraction expansion, Geophysics 48, 1671-1686 (1983)
  • [13] A. D. Chave and C. S. Cox, Controlled electromagnetic sources for measuring electrical conductivity beneath the oceans, 1. Forward problem and model study, J. Geophysical Research 87, 5327-5338 (1982)
  • [14] P. Cornille, Computation of Hankel transforms, SIAM Rev. 14, 278-285 (1972) MR 0311080
  • [15] P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Second Edition, Academic Press, New York, 1984 MR 760629
  • [16] S. R. Deans, The Radon Transform and Some of Its Applications, Wiley, New York, 1983 MR 709591
  • [17] F. R. DiNapoli and R. L. Deavenport, Theoretical and numerical Green's function field solution in a plane multilayered medium, J. Acoust. Soc. Amer. 67, 92-105 (1980) MR 553860
  • [18] G. V. Frisk, A. V. Oppenheim, and D. R. Martinez, A technique for measuring the plane wave reflection coefficient of the ocean bottom, J. Acoust. Soc. Amer. 68, 602-612 (1980) MR 579187
  • [19] I. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions, Vol. 5, Academic Press, New York, 1966 MR 0435835
  • [20] D. P. Ghosh, The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements, Geophysical Prospecting 19, 192-217 (1971)
  • [21] K. Gopalan, Fournier-Bessel expansion: Numerical evaluation and application in the representation and feature extraction of speech signals, Ph. D. Dissertation, University of Akron, Akron, Oh., 1984
  • [22] K. Gopalan and C. S. Chen, Fast computation of zero order Hankel transform, J. Franklin Inst. 316, 317-326 (1983) MR 718212
  • [23] E. W. Hansen, Fast Hankel transform algorithm, IEEE Trans. Acoust. Speech Signal Process. 33, 666-671 (1985), Errata 34, 623-624 (1986)
  • [24] S. Helgason, The Radon Transform, Birkhauser, Boston, Mass., 1980 MR 573446
  • [25] W. E. Higgins and D. C. Munson, An algorithm for computing general integer order Hankel transforms, IEEE Trans. Acoust. Speech Signal Process. 35, 86-97 (1987)
  • [26] J. D. Jackson, Mathematics for Quantum Mechanics, W. A. Benjamin, New York, 1962 MR 0144622
  • [27] E. Kausel and G. Bouchovalas, Computation of Hankel transforms using the fast Fourier transform algorithm, Massachusetts Institute of Technology, Civil Engineering Department, Research Report R79-12, 1979
  • [28] E. Kausel and J. M. Roesset, Stiffness matrices for layered soils, Bull. Seismol. Soc. Amer. 71, 1743-1761 (1981)
  • [29] M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge, England, 1962 MR 0115085
  • [30] I. M. Longman, Note on a method for computing infinite integrals of oscillatory functions, Proc. Cambridge Philos. Soc. 52, 764-768 (1956) MR 0082193
  • [31] I. M. Longman, Tables for the rapid and accurate numerical evaluation of certain infinite integrals involving Bessel functions, Mathematical Tables and Other Aides to Computation 11, 166-180 (1957) MR 0091538
  • [32] D. R. Mook, An algorithm for the numerical evaluation of the Hankel and Abel transforms, IEEE Trans. Acoust. Speech Signal Process. 31, 979-985 (1983)
  • [33] P. K. Murphy and N. C. Gallagher, Fast algorithm for the computation of the zero-order Hankel transform, J. Opt. Soc. Amer. 73, 1130-1137 (1983) MR 717882
  • [34] A. V. Oppenheim, G. V. Frisk, and D. R. Martinez, An algorithm for the numerical evaluation of the Hankel transform, Proc. IEEE 66, 264-265 (1978)
  • [35] A. V. Oppenheim, G. V. Frisk, and D. R. Martinez, Computation of the Hankel transform using projections, J. Acoust. Soc. Amer. 68, 523-529 (1980) MR 579187
  • [36] T. N. L. Patterson, The optimum addition of points to quadrature formulae, Math. Comp. 22, 847-856 (1968), Errata 23, 892 (1969) MR 0400633
  • [37] J. Radon, Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten, Brie Sachsische Akademie der Wissenschaften, Leipzig, Math-Phys. K1 69, 262-267 (1917) MR 692055
  • [38] S. Sheng and A. E. Siegman, Nonlinear-optical calculations using fast-transform methods: Second harmonic generation with depletion and diffracton, Phys. Rev. 21, 599-606
  • [39] A. E. Siegman, Quasi fast Hankel transform, Optics Letters 1, 13-15 (1977)
  • [40] I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972
  • [41] B. W. Suter, Some Numerical Applications of the Radon Transform, Ph. D. Dissertation, University of South Florida, Tampa, Fl., 1988
  • [42] B. W. Suter, Fast nth-order Hankel transform algorithm, IEEE Trans. Signal Process. 39, 532-536 (1991)
  • [43] J. D. Talman, Numerical Fourier and Bessel transforms in logarithmic variables, J. Comput. Phys. 29, 35-48 (1978) MR 510459
  • [44] R. K. Verma, Detectability by electromagnetic sounding systems, IEEE Trans. on Geoscience Electronics 15, 232-251 (1977)
  • [45] G. N. Watson, A Treatise on the Theory of Bessel Functions, Second edition, Cambridge University Press, Cambridge, England, 1966 MR 0010746

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 65R10, 44A15

Retrieve articles in all journals with MSC: 65R10, 44A15


Additional Information

DOI: https://doi.org/10.1090/qam/1106392
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society