Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Lyapunov stability via differential moments


Author: R. J. Charron
Journal: Quart. Appl. Math. 49 (1991), 447-452
MSC: Primary 34D20
DOI: https://doi.org/10.1090/qam/1121677
MathSciNet review: MR1121677
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show how differential moments can be used to construct Lyapunov functions for general, autonomous and nonautonomous, second- and third-degree ordinary differential equations. In certain instances, one can extend classical results to sequences of Lyapunov functions.


References [Enhancements On Off] (What's this?)

  • [1] E. A. Barbashin, On the stability of solution of a third order nonlinear differential equation, Prik. Math. Mekh. 16, 629-632 (1952)
  • [2] J. O. C. Ezeilo, On the stability of solutions of certain differential equations of the third order, Quart. J. Math. 11, 64-69 (1960) MR 0117394
  • [3] G. K. Kulev and D. D. Bainov, On the asymptotic stability of systems with impulses by the direct method of Lyapunov, J. Math. Anal. Appl. 140, 324-340 (1989) MR 1001859
  • [4] H. Leipholz, Stability Theory, Academic Press, New York, 1970 MR 0359445
  • [5] A. M. Lyapunov, Problème générale de la stabilité du mouvement, Annals of Math. Studies, Vol. 17, Princeton University Press, Princeton, New Jersey, 1949
  • [6] G. J. Michael, Explicit stability criteria for the damped Mathieu equation, IEEE Trans. Automat. Control AC-12, 337-338 (1967)
  • [7] K. S. Narendra and J. H. Taylor, Stability of the damped Mathieu equation, IEEE Trans. Automat. Control AC-13, 726 (1968)
  • [8] K. S. Narendra and R. M. Goldwyn, Stability of certain nonlinear differential equations, IEEE Trans. Automat. Control AC-8, 381-382 (1963)
  • [9] P. C. Parks, Comments on 'Explicit stability criteria for the damped Mathieu equation', IEEE Trans. Automat. Control AC-13, 129 (1968)
  • [10] K. P. Persidski, On the stability of motion in first approximation, Mat. Sb. 40, 284-293 (1933)
  • [11] P. J. Ponzo, On the Stability of certain nonlinear differential equations, IEEE Trans. Automat. Control AC-10, 470-472 (1965) MR 0188554
  • [12] P. J. Ponzo, Some stability conditions for linear differential equations, IEEE Trans. Automat. Control AC-13, 721-722 (1968) MR 0276568
  • [13] S. Ramarajan and S. N. Rao, An improved stability criteria for the damped Mathieu equation, IEEE Trans. Automat. Control AC-16, 363-364 (1971)
  • [14] N. Rouche, P. Habets, and M. Laloy, Stability Theory by Lyapunov's Direct Method, Applied Mathematical Sciences, Vol. 22, Springer-Verlag, New York, 1977 MR 0450715
  • [15] S. N. Simanov, On the stability of solution of a nonlinear equation of the third order, Akad. Nauk. SSSR, Prikl. Mat. Mekh. 17, 369-372 (1953) (in Russian) MR 0055523

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34D20

Retrieve articles in all journals with MSC: 34D20


Additional Information

DOI: https://doi.org/10.1090/qam/1121677
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society