Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Cavitation, the incompressible limit, and material inhomogeneity


Author: J. Sivaloganathan
Journal: Quart. Appl. Math. 49 (1991), 521-541
MSC: Primary 73G05; Secondary 73B27, 73C50, 73H99
DOI: https://doi.org/10.1090/qam/1121684
MathSciNet review: MR1121684
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. S. Antman and P. V. Negron-Marrero, The remarkable nature of radially symmetric equilibrium states of aelotropic nonlinearly elastic bodies, J. Elasticity 18, 131-164 (1987) MR 905811
  • [2] J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A 306, 557-611 (1982) MR 703623
  • [3] A. N. Gent and P. B. Lindley, Internal rupture of bonded rubber cylinders in tension, Proc. Roy. Soc. London Ser. A 249, 195-205 (1958)
  • [4] C. O. Horgan and R. Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a microvoid, J. Elasticity 16, 189-200 (1986) MR 849671
  • [5] C. O. Horgan and T. J. Pence, Cavity formation at the center of a composite incompressible nonlinearly elastic sphere, J. Appl. Mech. 56, 302-308 (1989) MR 1001749
  • [6] C. O. Horgan and T. J. Pence, Void nucleation in tensile loading of a composite incompressible nonlinearly elastic sphere, J. Elasticity 21, 61-82 (1989) MR 995580
  • [7] R. D. James and S. J. Spector, The formation of filamentary voids in solids, IMA preprint, no. 572, University of Minnesota, 1989 MR 1120242
  • [8] R. J. Knops and C. A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 86, 233-249 (1984) MR 751508
  • [9] K. A. Pericak-Spector and S. J. Spector, Nonuniqueness for a hyperbolic system: cavitation in nonlinear elastodynamics, Arch. Rational Mech. Anal. 101, 293-317 (1988) MR 930330
  • [10] P. Podio-Guidugli, G. Vergara Caffarelli, and E. G. Virga, Discontinuous energy minimisers in nonlinear elastostatics: an example of J. Ball revisited, J. Elasticity 16, 75-96 (1986) MR 835366
  • [11] J. Sivaloganathan, Cavitation in nonlinear elasticity and related problems, Ph.D. thesis, Heriot-Watt University, 1984
  • [12] J. Sivaloganathan, Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Rational Mech. Anal. 96, 97-136 (1986) MR 853969
  • [13] J. Sivaloganathan, A field theory approach to stability of equilibria in radial elasticity, Math. Proc. Cambridge Philos. Soc. 99, 589-604 (1986) MR 830370
  • [14] J. Sivaloganathan, The generalised Hamilton-Jacobi inequality and the stability of equilibria in nonlinear elasticity, Arch. Rational Mech. Anal. 107, 347-369 (1989) MR 1004715
  • [15] J. Sivaloganathan, Implications of rank-one convexity, Ann. Inst. H. Poincaré Anal. non linéaire 5, no. 4, 99-118 (1988) MR 954467
  • [16] C. A. Stuart, Radially symmetric cavitation for hyperelastic materials, Ann. Inst. H. Poincaré Anal. non linéaire 2, 33-66 (1985) MR 781591
  • [17] K. Zhang, Polyconvexity and stability of equilibria in nonlinear elasticity, Quart. Mech. Appl. Math. 43, 215-221 (1990) MR 1059004

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73G05, 73B27, 73C50, 73H99

Retrieve articles in all journals with MSC: 73G05, 73B27, 73C50, 73H99


Additional Information

DOI: https://doi.org/10.1090/qam/1121684
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society