Cavitation, the incompressible limit, and material inhomogeneity

Author:
J. Sivaloganathan

Journal:
Quart. Appl. Math. **49** (1991), 521-541

MSC:
Primary 73G05; Secondary 73B27, 73C50, 73H99

DOI:
https://doi.org/10.1090/qam/1121684

MathSciNet review:
MR1121684

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[1]**S. S. Antman and P. V. Negron-Marrero,*The remarkable nature of radially symmetric equilibrium states of aelotropic nonlinearly elastic bodies*, J. Elasticity**18**, 131-164 (1987) MR**905811****[2]**J. M. Ball,*Discontinuous equilibrium solutions and cavitation in nonlinear elasticity*, Philos. Trans. Roy. Soc. London Ser. A**306**, 557-611 (1982) MR**703623****[3]**A. N. Gent and P. B. Lindley,*Internal rupture of bonded rubber cylinders in tension*, Proc. Roy. Soc. London Ser. A**249**, 195-205 (1958)**[4]**C. O. Horgan and R. Abeyaratne,*A bifurcation problem for a compressible nonlinearly elastic medium: growth of a microvoid*, J. Elasticity**16**, 189-200 (1986) MR**849671****[5]**C. O. Horgan and T. J. Pence,*Cavity formation at the center of a composite incompressible nonlinearly elastic sphere*, J. Appl. Mech.**56**, 302-308 (1989) MR**1001749****[6]**C. O. Horgan and T. J. Pence,*Void nucleation in tensile loading of a composite incompressible nonlinearly elastic sphere*, J. Elasticity**21**, 61-82 (1989) MR**995580****[7]**R. D. James and S. J. Spector,*The formation of filamentary voids in solids*, IMA preprint, no. 572, University of Minnesota, 1989 MR**1120242****[8]**R. J. Knops and C. A. Stuart,*Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity*, Arch. Rational Mech. Anal.**86**, 233-249 (1984) MR**751508****[9]**K. A. Pericak-Spector and S. J. Spector,*Nonuniqueness for a hyperbolic system: cavitation in nonlinear elastodynamics*, Arch. Rational Mech. Anal.**101**, 293-317 (1988) MR**930330****[10]**P. Podio-Guidugli, G. Vergara Caffarelli, and E. G. Virga,*Discontinuous energy minimisers in nonlinear elastostatics: an example of J. Ball revisited*, J. Elasticity**16**, 75-96 (1986) MR**835366****[11]**J. Sivaloganathan,*Cavitation in nonlinear elasticity and related problems*, Ph.D. thesis, Heriot-Watt University, 1984**[12]**J. Sivaloganathan,*Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity*, Arch. Rational Mech. Anal.**96**, 97-136 (1986) MR**853969****[13]**J. Sivaloganathan,*A field theory approach to stability of equilibria in radial elasticity*, Math. Proc. Cambridge Philos. Soc.**99**, 589-604 (1986) MR**830370****[14]**J. Sivaloganathan,*The generalised Hamilton-Jacobi inequality and the stability of equilibria in nonlinear elasticity*, Arch. Rational Mech. Anal.**107**, 347-369 (1989) MR**1004715****[15]**J. Sivaloganathan,*Implications of rank-one convexity*, Ann. Inst. H. Poincaré Anal. non linéaire**5**, no. 4, 99-118 (1988) MR**954467****[16]**C. A. Stuart,*Radially symmetric cavitation for hyperelastic materials*, Ann. Inst. H. Poincaré Anal. non linéaire**2**, 33-66 (1985) MR**781591****[17]**K. Zhang,*Polyconvexity and stability of equilibria in nonlinear elasticity*, Quart. Mech. Appl. Math.**43**, 215-221 (1990) MR**1059004**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73G05,
73B27,
73C50,
73H99

Retrieve articles in all journals with MSC: 73G05, 73B27, 73C50, 73H99

Additional Information

DOI:
https://doi.org/10.1090/qam/1121684

Article copyright:
© Copyright 1991
American Mathematical Society