Pure torsion of compressible non-linearly elastic circular cylinders

Authors:
Debra A. Polignone and Cornelius O. Horgan

Journal:
Quart. Appl. Math. **49** (1991), 591-607

MSC:
Primary 73G05; Secondary 73C50, 73K05

DOI:
https://doi.org/10.1090/qam/1121689

MathSciNet review:
MR1121689

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The large deformation torsion problem of an elastic circular cylinder, composed of homogeneous isotropic *compressible* nonlinearly elastic material and subjected to twisting moments at its ends, is described. The problem is formulated as a two-point boundary-value problem for a second-order nonlinear ordinary differential equation in the radial deformation field. The class of materials for which *pure torsion* (i.e., a deformation with zero radial displacement) is possible is described. Specific material models are used to illustrate the results.

**[1]**R. S. Rivlin,*Large elastic deformations of isotropic materials*IV.*Further developments of the general theory*, Philos. Trans. Roy. Soc. London Ser. A**241**, 379-397 (1948) MR**0027674****[2]**R. S. Rivlin,*A note on the torsion of an incompressible highly-elastic cylinder*, Proc. Cambridge Philos. Soc.**45**, 485-487 (1949) MR**0029695****[3]**J. L. Ericksen,*Deformations possible in every compressible, isotropic, perfectly elastic material*, J. Math. Phys.**34**, 126-128 (1955) MR**0070397****[4]**A. E. Green,*Finite elastic deformation of compressible isotropic bodies*, Proc. Roy. Soc. London Ser. A**227**, 271-278 (1955) MR**0067671****[5]**A. E. Green and J. E. Adkins,*Large Elastic Deformations*, Oxford Univ. Press, Oxford, 1960 MR**0269158****[6]**R. W. Ogden,*Non-linear Elastic Deformations*, Ellis Horwood, Chichester, 1984**[7]**A. E. Green and E. W. Wilkes,*A note on the finite extension and torsion of a circular cylinder of compressible elastic isotropic material*, Quart. J. Mech. Appl. Math.**6**, 240-249 (1953) MR**0057131****[8]**C. Truesdell and W. Noll,*The non-linear field theories of mechanics*, Handbuch der Physik, vol. III/3 (S. Flügge, ed.), Springer, Berlin, 1965 MR**0193816****[9]**R. T. Shield,*An energy method for certain second-order effects with application to torsion of elastic bars under tension*, J. Appl. Mech.**47**, 75-81 (1980)**[10]**M. Levinson,*Finite torsion of slightly compressible rubberlike circular cylinders*, Internat. J. Non-Linear Mech.**7**, 445-463 (1972)**[11]**M. G. Faulkner and J. B. Haddow,*Nearly isochoric finite torsion of a compressible isotropic elastic circular cylinder*, Acta Mech.**13**, 245-253 (1972)**[12]**R. W. Ogden,*Nearly isochoric elastic deformations: application to rubberlike solids*, J. Mech. Phys. Solids**26**, 37-57 (1978) MR**505905****[13]**P. K. Currie and M. Hayes,*On non-universal finite elastic deformations*, Finite Elasticity (D. E. Carlson and R. T. Shield, eds.), Proceedings of IUTAM Symposium, Martinus Nijhoff, The Hague, 1982, pp. 143-150**[14]**P. J. Blatz and W. L. Ko,*Application of finite elasticity to the deformation of rubbery materials*, Trans. Soc. Rheol.**6**, 223-251 (1962)**[15]**M. F. Beatty,*Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues--with examples*, Appl. Mech. Rev.**40**, 1699-1734 (1987)**[16]**M. M. Carroll and C. O. Horgan,*Finite strain solutions for a compressible elastic solid*, Quart. Appl. Math.**48**, 767-780 (1990) MR**1079919****[17]**J. K. Knowles and E. Sternberg,*On the ellipticity of the equations of nonlinear elastostatics for a special material*, J. Elasticity**5**, 341-361 (1975) MR**0475115****[18]**R. Abeyaratne and C. O. Horgan,*Initiation of localized plane deformations at a circular cavity in an infinite compressible nonlinearly elastic medium*, J. Elasticity**15**, 243-256 (1985) MR**804497****[19]**C. O. Horgan and R. Abeyaratne,*A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void*, J. Elasticity**16**, 189-200 (1986) MR**849671****[20]**D.-T. Chung, C. O. Horgan, and R. Abeyaratne,*The finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible elastic materials*, Internat. J. Solids and Structures**22**, 1557-1570 (1986)**[21]**C. O. Horgan,*Some remarks on axisymmetric solutions in finite elastostatics for compressible materials*, Proc. Roy. Irish Acad. Sect. A**89**, 185-193 (1989) MR**1051392****[22]**J. S. K. Wong and R. T. Shield,*The stability of a cylindrical elastic membrane of biological tissue and the effect of internal fluid flow*, Ing.-Archiv**49**, 393-412 (1980)**[23]**Y. C. Fung,*Biomechanics. Mechanical Properties of Living Tissues*, Springer-Verlag, Berlin, 1981**[24]**M. M. Carroll,*Finite strain solutions in compressible isotropic elasticity*, J. Elasticity**20**, 65-92 (1988) MR**962367****[25]**F. John,*Plane elastic waves of finite amplitude: Hadamard materials and harmonic materials*, Comm. Pure Appl. Math.**19**, 309-341 (1966) MR**0201113****[26]**D. M. Haughton,*Inflation of thick-walled compressible elastic spherical shells*, IMA J. Appl. Math.**39**, 259-272 (1987) MR**983745****[27]**O. H. Varga,*Stress-Strain Behavior of Elastic Materials*, Wiley, New York, 1966 MR**0205523****[28]**D. A. Polignone and C. O. Horgan,*Axisymmetric finite anti-plane shear of compressible nonlinearly elastic circular tubes*, Quart. Appl. Math., to appear MR**1162279**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73G05,
73C50,
73K05

Retrieve articles in all journals with MSC: 73G05, 73C50, 73K05

Additional Information

DOI:
https://doi.org/10.1090/qam/1121689

Article copyright:
© Copyright 1991
American Mathematical Society