Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Voltage-current characteristics of multidimensional semiconductor devices

Author: Christian Schmeiser
Journal: Quart. Appl. Math. 49 (1991), 753-772
MSC: Primary 35Q60; Secondary 78A55, 82D99
DOI: https://doi.org/10.1090/qam/1134751
MathSciNet review: MR1134751
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The steady state drift-diffusion model for the flow of electrons and holes in semiconductors is simplified by perturbation techniques. The simplifications amount to assuming zero space charge and low injection. The limiting problems are solved and explicit formulas for the voltage-current characteristics of bipolar devices can be obtained. As examples, the $ pn$-diode, the bipolar transistor and the thyristor are discussed. While the classical results of a one-dimensional analysis are confirmed in the case of the diode, some important effects of the higher dimensionality appear for the bipolar transistor.

References [Enhancements On Off] (What's this?)

  • [1] F. Brezzi, A. Capelo, and L. Gastaldi, A singular perturbation analysis of reverse biased semiconductor diodes, SIAM J. Math. Anal. 20, 372-387 (1989) MR 982665
  • [2] J. Henry and B. Louro, Singular perturbation theory applied to the electrochemistry equations in the case of electroneutrality, Nonlinear Analysis TMA 13, 787-801 (1989) MR 999329
  • [3] P. A. Markowich, A singular perturbation analysis of the fundamental semiconductor device equations, SIAM J. Appl. Math. 44, 896-928 (1984) MR 759704
  • [4] P. A. Markowich, The Stationary Semiconductor Device Equations, Springer-Verlag, Vienna-New York, 1986 MR 821965
  • [5] P. A. Markowich and C. Ringhofer, A singularly perturbed boundary value problem modelling a semiconductor device, SIAM J. Appl. Math. 44, 231-256 (1984) MR 739302
  • [6] P. A. Markowich, C. Ringhofer, and C. Schmeiser, An asymptotic analysis of one-dimensional semiconductor device models, IMA J. Appl. Math. 37, 1-24 (1986) MR 983515
  • [7] P. A. Markowich , C. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna-New York, 1990 MR 1063852
  • [8] P. A. Markowich and C. Schmeiser, Uniform asymptotic representation of solutions of the basic semiconductor device equations, IMA J. Appl. Math. 36, 43-57 (1986) MR 984458
  • [9] R. E. O'Malley and C. Schmeiser, The asymptotic solution of a semiconductor device problem involving reverse bias, SIAM J. Appl. Math. 50, 504-520 (1990) MR 1043599
  • [10] C. P. Please, An analysis of semiconductor P-N junctions, IMA J. Appl. Math. 28, 301-318 (1982)
  • [11] C. Schmeiser, On strongly reverse biased semiconductor diodes, SIAM J. Appl. Math. 49, (1989) 1734-1748 MR 1025957
  • [12] C. Schmeiser, A singular perturbation analysis of reverse biased pn-junclions, SIAM J. Math. Anal. 21, 313-326 (1990) MR 1038894
  • [13] C. Schmeiser, Free boundariers in semiconductor devices, Proc. Free Boundary Problems: Theory and Applications, Montreal, 1990, to appear MR 1216372
  • [14] C. Schmeiser and R. Weiss, Asymptotic analysis of singular singularly perturbed boundary value problems, SIAM J. Math. Anal. 17, 560-579 (1986) MR 838241
  • [15] W. Shockley, The theory of p-n junctions in semiconductors and p - n junction transistors, Bell Syst. Tech. J. 28, 435 (1949)
  • [16] J. W. Slotboom, Iterative scheme for 1- and 2-dimensional D.C.-transistor simulation, Electron. Lett. 5, 677-678 (1969)
  • [17] H. Steinrück, A bifurcation analysis of the one-dimensional steady-state semiconductor device equations, SIAM J. Math. 49, 1102-1121 (1989) MR 1005499
  • [18] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley , New York, 1981
  • [19] A. B. Vasil'eva and V. G. Stelmakh, Singularly disturbed systems of the theory of semiconductor devices, USSR Comput. Math. Phys. 17, 48-58 (1977)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q60, 78A55, 82D99

Retrieve articles in all journals with MSC: 35Q60, 78A55, 82D99

Additional Information

DOI: https://doi.org/10.1090/qam/1134751
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society