A note on the existence of a waiting time for a two-phase Stefan problem

Authors:
Domingo Alberto Tarzia and Cristina Vilma Turner

Journal:
Quart. Appl. Math. **50** (1992), 1-10

MSC:
Primary 35R35; Secondary 35K05

DOI:
https://doi.org/10.1090/qam/1146619

MathSciNet review:
MR1146619

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a slab, represented by the interval , at the initial temperature having a heat flux (or convective boundary condition with a heat transfer coefficient ) on the left face and a temperature condition on the right face ( could be also , i.e., a semi-infinite material). We consider the corresponding heat conduction problem and assume that the phase-change temperature is .

**[1]**D. G. Aronson,*The porous medium equation*, Nonlinear diffusion problems (Montecatini Terme, 1985) Lecture Notes in Math., vol. 1224, Springer, Berlin, 1986, pp. 1–46. MR**877986**, https://doi.org/10.1007/BFb0072687**[2]**A. B. Bancora and D. A. Tarzia,*On the Neumann solution for the two-phase Stefan problem including the density jump at the free boundary*, Lat. Am. J. Heat Mass Transfer**9**, 215-222 (1985)**[3]**J. R. Cannon,*The One-dimensional Heat Equation*, Addison-Wesley, Menlo Park, California, 1967**[4]**H. S. Carslaw and J. C. Jaeger,*Conduction of heat in solids*, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988. MR**959730****[5]**A. Fasano and M. Primicerio,*General free-boundary problems for the heat equation. I*, J. Math. Anal. Appl.**57**(1977), no. 3, 694–723. MR**0487016**, https://doi.org/10.1016/0022-247X(77)90256-6**[6]**Avner Friedman,*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836****[7]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861****[8]**B. Sherman,*General one-phase Stefan problems and free boundary problems for the heat equation with Cauchy data prescribed on the free boundary*, SIAM J. Appl. Math.**20**(1971), 555–570. MR**0287193**, https://doi.org/10.1137/0120058**[9]**A. D. Solomon, V. Alexiades, and D. G. Wilson,*The Stefan problem with a convective boundary condition*, Quart. Appl. Math.**40**(1982/83), no. 2, 203–217. MR**666675**, https://doi.org/10.1090/S0033-569X-1982-0666675-6**[10]**A. D. Solomon, D. G. Wilson, and V. Alexiades,*Explicit solutions to phase change problems*, Quart. Appl. Math.**41**(1983/84), no. 2, 237–243. MR**719507**, https://doi.org/10.1090/S0033-569X-1983-0719507-5**[11]**D. A. Tarzia,*Sobre el caso estacionario del problema de Stefan a dos fases*, Math. Notae**28**, 73-89 (1980)**[12]**Domingo Alberto Tarzia,*An inequality for the coefficient 𝜎 of the free boundary 𝑠(𝑡)=2𝜎√𝑡 of the Neumann solution for the two-phase Stefan problem*, Quart. Appl. Math.**39**(1981/82), no. 4, 491–497. MR**644103**, https://doi.org/10.1090/S0033-569X-1982-0644103-2**[13]**D. A. Tarzia,*An inequality for the constant heat flux to obtain a steady-state two-phase Stefan problem*, Engineering Analysis**5**, 177-181 (1988). See also*On heat flux in materials on free boundary problems: Theory and applications*, Irsee/Bavaria, 11-20 June 1987, Res. Notes in Math., No. 186, Pitman, London, 1990, pp. 703-709.**[14]**D. A. Tarzia,*The two-phase Stefan problem and some related conduction problems*, Reuniões em Matemática Aplicada e Computacão Científica, Vol. 5, SBMAC-Soc. Brasileira Mat. Apl. Comput., Gramado, 1987

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35R35,
35K05

Retrieve articles in all journals with MSC: 35R35, 35K05

Additional Information

DOI:
https://doi.org/10.1090/qam/1146619

Article copyright:
© Copyright 1992
American Mathematical Society