A note on the existence of a waiting time for a two-phase Stefan problem

Authors:
Domingo Alberto Tarzia and Cristina Vilma Turner

Journal:
Quart. Appl. Math. **50** (1992), 1-10

MSC:
Primary 35R35; Secondary 35K05

DOI:
https://doi.org/10.1090/qam/1146619

MathSciNet review:
MR1146619

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a slab, represented by the interval , at the initial temperature having a heat flux (or convective boundary condition with a heat transfer coefficient ) on the left face and a temperature condition on the right face ( could be also , i.e., a semi-infinite material). We consider the corresponding heat conduction problem and assume that the phase-change temperature is .

**[1]**D. G. Aronson,*The porous medium equation*, Nonlinear Diffusion Problems (A. Fasano and M. Primicerio, eds.), Lecture Notes in Math., Vol. 1224, Springer-Verlag, Berlin, 1986, pp. 1-46 MR**877986****[2]**A. B. Bancora and D. A. Tarzia,*On the Neumann solution for the two-phase Stefan problem including the density jump at the free boundary*, Lat. Am. J. Heat Mass Transfer**9**, 215-222 (1985)**[3]**J. R. Cannon,*The One-dimensional Heat Equation*, Addison-Wesley, Menlo Park, California, 1967**[4]**H. S. Carslaw and J. C. Jaeger,*Conduction of Heat in Solids*, Clarendon Press, Oxford, 1959 MR**959730****[5]**A. Fasano and M. Primicerio,*General free boundary problems for the heat equation*. I, J. Math. Anal. Appl.**57**, 694-723 (1977) MR**0487016****[6]**A. Friedman,*Partial Differential Equations of Parabolic Type*, Prentice-Hall, Englewood Cliffs, 1964 MR**0181836****[7]**M. H. Protter and H. F. Weinberger,*Maximum Principles in Differential Equations*, Prentice-Hall, Englewood Cliffs, 1967 MR**0219861****[8]**B. Sherman,*General one-phase Stefan problems and free boundary problems for the heat equation with Cauchy data prescribed on the free boundary*, SIAM J. Appl. Math.**20**, 555-570 (1971) MR**0287193****[9]**A. D. Solomon, V. Alexiades, and D. G. Wilson,*The Stefan problem with a convective boundary condition*, Quart. Appl. Math.**40**, 203-217 (1982) MR**666675****[10]**A. D. Solomon, D. G. Wilson, and V. Alexiades,*Explicit solutions to change problems*, Quart. Appl. Math.**41**, 237-243 (1983) MR**719507****[11]**D. A. Tarzia,*Sobre el caso estacionario del problema de Stefan a dos fases*, Math. Notae**28**, 73-89 (1980)**[12]**D. A. Tarzia,*An inequality for the coefficient of the free boundary of the Neumann solution for the two-phase Stefan problem*, Quart. Appl. Math.**39**, 491-497 (1981-82) MR**644103****[13]**D. A. Tarzia,*An inequality for the constant heat flux to obtain a steady-state two-phase Stefan problem*, Engineering Analysis**5**, 177-181 (1988). See also*On heat flux in materials on free boundary problems: Theory and applications*, Irsee/Bavaria, 11-20 June 1987, Res. Notes in Math., No. 186, Pitman, London, 1990, pp. 703-709.**[14]**D. A. Tarzia,*The two-phase Stefan problem and some related conduction problems*, Reuniões em Matemática Aplicada e Computacão Científica, Vol. 5, SBMAC-Soc. Brasileira Mat. Apl. Comput., Gramado, 1987

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35R35,
35K05

Retrieve articles in all journals with MSC: 35R35, 35K05

Additional Information

DOI:
https://doi.org/10.1090/qam/1146619

Article copyright:
© Copyright 1992
American Mathematical Society