Existence and nonexistence results on the radially symmetric cavitation problem

Author:
François Meynard

Journal:
Quart. Appl. Math. **50** (1992), 201-226

MSC:
Primary 73G05; Secondary 73C50

DOI:
https://doi.org/10.1090/qam/1162272

MathSciNet review:
MR1162272

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the problem of radially symmetric cavitation for a hyperelastic ball in . The radial equilibrium equation is analyzed by a shooting argument. The basic formulation of the problem is the same as C. A. Stuart's formulation in [10], but an asymptotic study of the solutions of the radial equilibrium equation allows us to enlarge the discussion of cavitation to cases that are excluded from the context of [10]. Finally, criteria for nonexistence to the problem of cavitation are briefly discussed. They have a physical interpretation through relations between the total energy and the radial stress.

**[1]**J. M. Ball,*Discontinuous equilibrium solutions and cavitation in non-linear elasticity*, Philos. Trans. Roy. Soc. London Ser. A**306**, 557-611 (1982) MR**703623****[2]**J. M. Ball,*Minimizing sequences in Thermomechanics*, Meeting on finite Thermoelasticity, Academia Nazionale dei Lincei, Roma. 1986**[3]**A. N. Gent and P. B. Lindley,*Internal rupture of bonded rubber cylinders in tension*, Proc. Roy. Soc. London Ser. A**249**, 195-205 (1958)**[4]**M. E. Gurtin,*An introduction to continuum mechanics*, Academic Press, New York, 1981 MR**636255****[5]**C. O. Horgan and R. Abeyaratnne,*A bifurcation problem for a compressible non-linearly elastic medium, growth of a micro-void*, J. Elasticity**16**, 189-200 (1986) MR**849671****[6]**R. D. James and S. J. Spector,*The formation of filamentary voids in solids*, Institute for Mathematics and its Applications, University of Minnesota, preprint series, 572, 1989 MR**1120242****[7]**F. Meynard,*Cavitation radiale d'un milieu homogène isotrope et hyperelastique. Ph.D. Thesis*, Dept. of Mathematics EPFL 1990 (to appear)**[8]**J. Sivaloganathan,*Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity*, Arch. Rational Mech. Anal.**96**, 97-136 (1986) MR**853969****[9]**J. Sivaloganathan,*A field theory approach to stability of radial equilibria in non-linear elasticity*, Math. Proc. Cambridge Philos. Soc.**99**, 589-604 (1986) MR**830370****[10]**C. A. Stuart,*Radially symmetric cavitation for hyperelastic materials*, Ann. Inst. H. Poincaré**2**, 33-66 (1985) MR**781591****[11]**C. A. Stuart,*Special problems involving uniqueness and multiplicity*, Hyperelasticity, Non-Linear Functional Analysis and its Applications, (S. P. Singh, ed.), D. Reidel Publishing Company, 1986, pp. 131-145 MR**852573**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73G05,
73C50

Retrieve articles in all journals with MSC: 73G05, 73C50

Additional Information

DOI:
https://doi.org/10.1090/qam/1162272

Article copyright:
© Copyright 1992
American Mathematical Society