Oscillations and global attractivity in a discrete delay logistic model

Authors:
S. A. Kuruklis and G. Ladas

Journal:
Quart. Appl. Math. **50** (1992), 227-233

MSC:
Primary 92D25; Secondary 34K15, 92B05

DOI:
https://doi.org/10.1090/qam/1162273

MathSciNet review:
MR1162273

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the discrete delay logistic model

**[1]**Louis Brand,*Classroom Notes: A Sequence Defined by a Difference Equation*, Amer. Math. Monthly**62**(1955), no. 7, 489–492. MR**1529078**, https://doi.org/10.2307/2307362**[2]**I. Győri and G. Ladas,*Oscillation theory of delay differential equations*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. With applications; Oxford Science Publications. MR**1168471****[3]**I. Győri and G. Ladas,*Linearized oscillations for equations with piecewise constant arguments*, Differential Integral Equations**2**(1989), no. 2, 123–131. MR**984181****[4]**G. Ladas,*Recent developments in the oscillation of delay difference equations*, Differential equations (Colorado Springs, CO, 1989) Lecture Notes in Pure and Appl. Math., vol. 127, Dekker, New York, 1991, pp. 321–332. MR**1096768****[5]**Simon A. Levin and Robert M. May,*A note on difference-delay equations*, Theoret. Population Biology**9**(1976), no. 2, 178–187. MR**0504043****[6]**R. M. May,*Biological populations obeying difference equations: stable points, stable cycles, and chaos*, J. Theoret. Biol.**51**, 511-524 (1955)**[7]**A. J. Nicholson,*Compensatory reactions of populations to stresses and their evolutionary significance*, Austral. J. Zool.**2**, 9-65 (1954)**[8]**E. C. Pielou,*An introduction to mathematical ecology*, Wiley-Interscience A Division of John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR**0252051****[9]**E. C. Pielou,*Population and Community Ecology*, Gordon and Breach, New York, 1974

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
92D25,
34K15,
92B05

Retrieve articles in all journals with MSC: 92D25, 34K15, 92B05

Additional Information

DOI:
https://doi.org/10.1090/qam/1162273

Article copyright:
© Copyright 1992
American Mathematical Society