Oscillations and global attractivity in a discrete delay logistic model

Authors:
S. A. Kuruklis and G. Ladas

Journal:
Quart. Appl. Math. **50** (1992), 227-233

MSC:
Primary 92D25; Secondary 34K15, 92B05

DOI:
https://doi.org/10.1090/qam/1162273

MathSciNet review:
MR1162273

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the discrete delay logistic model

**[1]**L. Brand,*A sequence defined by a difference equation*, Amer. Math. Monthly**62**, 489-492 (1955) MR**1529078****[2]**I. Györi and G. Ladas,*Oscillation Theory of Delay Difference Equations with Applications*, Oxford Univ. Press, 1991 MR**1168471****[3]**I. Györi and G. Ladas,*Linearized oscillations for equations with piecewise constant arguments*, Differential Integral Equations J.**2**, 123-131 (1989) MR**984181****[4]**G. Ladas,*Recent developments in the oscillation of delay difference equations*, Differential Equations: Stability and Control, Marcel Dekker, 1990 MR**1096768****[5]**S. Levin and R. May,*A note on difference-delay equations*, Theoret. Population Biol.**9**, 178-187 (1976) MR**0504043****[6]**R. M. May,*Biological populations obeying difference equations: stable points, stable cycles, and chaos*, J. Theoret. Biol.**51**, 511-524 (1955)**[7]**A. J. Nicholson,*Compensatory reactions of populations to stresses and their evolutionary significance*, Austral. J. Zool.**2**, 9-65 (1954)**[8]**E. C. Pielou,*An Introduction to Mathematical Ecology*, Wiley-Interscience, 1969 MR**0252051****[9]**E. C. Pielou,*Population and Community Ecology*, Gordon and Breach, New York, 1974

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
92D25,
34K15,
92B05

Retrieve articles in all journals with MSC: 92D25, 34K15, 92B05

Additional Information

DOI:
https://doi.org/10.1090/qam/1162273

Article copyright:
© Copyright 1992
American Mathematical Society