Local energy decay for the damped plate equation in exterior domains

Author:
Song Jiang

Journal:
Quart. Appl. Math. **50** (1992), 257-272

MSC:
Primary 35C15; Secondary 35L20, 43A50, 73F15, 73K10

DOI:
https://doi.org/10.1090/qam/1162275

MathSciNet review:
MR1162275

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish a rate of local energy decay for solutions of the damped plate equation with variable coefficients in exterior domains by using the spectral analysis to the corresponding stationary problem.

**[1]**R. A. Adams,*Sobolev Spaces*, Academic Press, New York, 1975 MR**0450957****[2]**S. Agmon,*Lectures on Elliptic Boundary Value Problems*, Van Nostrand, Princeton, NJ, 1965 MR**0178246****[3]**H. Iwashita and Y. Shibata,*On the analyticity of spectral functions for some exterior boundary value problems*, Glasnik Math.**23**, 291-313 (1988) MR**1012030****[4]**S. Jiang,*-- estimates for solutions to the damped plate equation in exterior domains*, Results in Math.**18**, 231-253 (1990) MR**1078420****[5]**S. Klainerman and G. Ponce,*Global, small amplitude solutions to nonlinear evolution equations*, Comm. Pure Appl. Math.**36**, 133-141 (1983) MR**680085****[6]**R. Leis,*Initial Boundary Value Problems in Mathematical Physics*, Teubner, Stuttgart, and Wiley, Chichester, 1986 MR**841971****[7]**T. Muramatsu,*On Besov spaces and Sobolev spaces of generalized functions defined in a general region*, Publ. Res. Inst. Math. Sci.**9**, 325-396 (1977) MR**0341063****[8]**G. Ponce,*Global existence of small solutions to a class of nonlinear evolution equations*, Nonlinear Anal.**9**, 399-418 (1985) MR**785713****[9]**R. Racke,*Decay rates for solutions of damped systems and generalized Fourier transforms*, J. Reine Angew. Math.**412**, 1-19 (1990) MR**1078997****[10]**Y. Shibata,*On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain*, Tsukuba J. Math.**7**, 1-68 (1983) MR**703667****[11]**Y. Shibata and Y. Tsutsumi,*On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain*, Math. Z.**191**, 165-199 (1986) MR**818663****[12]**B. R. Vainberg,*On the analytical properties of the resolvent for a certain class of operator-pencils*, Math. USSR-Sb.**6**, 241-273 (1968) MR**0240447****[13]**B. R. Vainberg,*On exterior elliptic problems polynomially depending on a spectral parameter, and the asymptotic behaviour for large time of solutions of nonstationary problems*, Math. USSR-Sb.**21**, 221-239 (1973)**[14]**B. R. Vainberg,*On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as of solutions of non-stationary problems*, Russian Math. Surveys**30**, 1-58 (1975) MR**0415085****[15]**C. H. Wilcox,*Scattering theory for the d'Alembert equation in exterior domains*, Lecture Notes in Math., vol. 442, Springer-Verlag, Berlin, 1975 MR**0460927**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35C15,
35L20,
43A50,
73F15,
73K10

Retrieve articles in all journals with MSC: 35C15, 35L20, 43A50, 73F15, 73K10

Additional Information

DOI:
https://doi.org/10.1090/qam/1162275

Article copyright:
© Copyright 1992
American Mathematical Society