Scalar wave scattering of a prolate spheroid as a parameter expansion of that of a sphere

Author:
Thomas M. Acho

Journal:
Quart. Appl. Math. **50** (1992), 451-468

MSC:
Primary 35J05; Secondary 35P25

DOI:
https://doi.org/10.1090/qam/1178427

MathSciNet review:
MR1178427

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the scattering problem for the prolate spheroid,

**[1]**M. Abramowitz and I. A. Stegun,*Handbook of Mathematical Functions*, Dover, New York, 1965.**[2]**D. U. Anyanwu and J. B. Keller,*Asymptotic solution of eigenvalue problems for second-order ordinary differential equations*, Comm. Pure Appl. Math.**28**, 753-763 (1975) MR**0393636****[3]**D. U. Anyanwu,*Uniform asymptotic solutions of nonhomogeneous differential equations with turning points*, SIAM J. Math. Anal.**8**, 710-719 (1977) MR**0596985****[4]**D. U. Anyanwu and J. B. Keller,*Asymptotic solutions of higher order differential equations with several turning points, and application to wave propagation in slowly varying wave guides*, Comm. Pure Appl. Math.**31**, 107-121 (1978) MR**0486874****[5]**G. D. Birkhoff,*Quantum mechanics and asymptotic series*, Bull. Amer. Math. Soc.**39**, 681-700 (1933) MR**1562719****[6]**J. J. Bowman et al.,*Electromagnetic and Acoustic Scattering by Simple Shapes*, North-Holland, Amsterdam, 1969**[7]**I. S. Gradshteyn and I. W. Ryzhik,*Table of Integrals, Series and Products*, Academic Press, New York, 1963**[8]**A. C. Hewson,*An Introduction to the Theory of Electromagnetic Waves*, Longman, London 1970**[9]**J. B. Keller and R. M. Lewis,*Asymptotic methods for partial differential equations*, New York Univ., Courant Inst. Math. Sci., Electromagnetic Res., Rep. No. tM-194, 1964**[10]**J. B. Keller et al.,*Asymptotic solution of some diffraction problems*, Comm. Pure Appl. Math.**9**, 207-266 (1956) MR**0079182****[11]**R. Y. S. Lynn and J. B. Keller,*Uniform asymptotic solutions of second order linear ordinary differential equations with turning points*, Comm. Pure Appl. Math.**23**, 379-408 (1970) MR**0261100****[12]**P. M. Morse and H. Feshbach,*Methods of Mathematical Physics*, McGraw-Hill, New York, 1953 MR**0059774****[13]**Robert D. Sidman and George H. Handelman,*Motion of a spherical obstacle generated by plane or spherical acoustic waves*, J. Acoust. Soc. Amer. (3)**52**, 923-927 (1972)**[14]**Robert D. Sidman,*Scattering of acoustic waves by a prolate spheroidal obstacle*, J. Acoust. Soc. of Amer. (3)**52**, 879-883 (1972)**[15]**Seymour Stein,*Addition theorems for spherical wave functions*, Quart. Appl. Math.**19**, 15-24 (1961) MR**0120407****[16]**A. Sommerfeld and J. Rung,*Anvedung der Vektorrechung auf die Grundlages der geometrischen Optik*, Ann. Physik**35**, 277-298 (1911)**[17]**Thomas M. Acho,*Scattering by a fluid prolate spheroid of radiation from a nearby spherical acoustic source*, submitted for publication**[18]**A. L. Van Buren and B. J. King,*Acoustic radiation from two spheroids*, J. Acoust. Soc. Amer. (1)**52**, 364-372 (1972)**[19]**William Thompson,*Acoustic radiation from a spherical source embedded eccentrically within a fluid sphere*, J. Acoust. Soc. Amer.**54**, 1694-1707 (1973)**[20]**William Thompson,*Radiation from a spherical acoustic source near a scattering sphere*, J. Acoust. Soc. Amer.**60**, 781-787 (1976)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35J05,
35P25

Retrieve articles in all journals with MSC: 35J05, 35P25

Additional Information

DOI:
https://doi.org/10.1090/qam/1178427

Article copyright:
© Copyright 1992
American Mathematical Society