A singular perturbation nonlinear boundary value problem and the -condition for a scalar conservation law

Authors:
Jie Jiang and Xue Kong Wang

Journal:
Quart. Appl. Math. **50** (1992), 547-557

MSC:
Primary 35L65; Secondary 34B15, 34E15

DOI:
https://doi.org/10.1090/qam/1178434

MathSciNet review:
MR1178434

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the singular perturbation boundary value problem

**[1]**C. M. Dafermos,*Polygonal approximations of solutions of the initial value problem for a conservation law*, J. Math. Anal. Appl.**38**, 33-41 (1972) MR**0303068****[2]**L. Holden and R. Høegh-Krohn,*A class of N nonlinear hyperbolic conservation laws*, J. of Differential Equations**84**, 73-99 (1990) MR**1042660****[3]**O. A. Oleĭnik,*Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation*, Uspekhi Mat. Nauk, Vol. 14, 165-170 (1959); Amer. Math. Soc. Transl. (2),**33**, 285-290 (1963)**[4]**J. Serrin and S. Varberg,*A general charm rule for derivatives and change of variables formula for the Lebesgue integral*, Amer. Math. Monthly**76**, 514-520 (1969) MR**0247011****[5]**J. Smoller,*Shock Waves and Reaction-Diffusion Equation*, Springer, New York, 1983 MR**688146****[6]**Wang Junyu,*The jump conditions for second order quasilinear degenerate parabolic equations*, J. Partial Differential Equations**3**, 39-48 (1990) MR**1071675**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L65,
34B15,
34E15

Retrieve articles in all journals with MSC: 35L65, 34B15, 34E15

Additional Information

DOI:
https://doi.org/10.1090/qam/1178434

Article copyright:
© Copyright 1992
American Mathematical Society