Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Asymptotic solutions of a generalized Burgers equation

Authors: V. Vanaja and P. L. Sachdev
Journal: Quart. Appl. Math. 50 (1992), 627-640
MSC: Primary 35Q53; Secondary 76R99, 76S05
DOI: https://doi.org/10.1090/qam/1193660
MathSciNet review: MR1193660
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The travelling wave solutions of the generalized Burgers equation

$\displaystyle \frac{{\partial u}}{{\partial t}} = \frac{\partial }{{\partial x}... ...x}}} \right] - \frac{\partial }{{\partial x}}\left[ {K\left( u \right)} \right]$

are related to the solution of the initial boundary value problems for the same equation, subject to initial boundary conditions relevant to the physical problem of infiltration of moisture into a homogeneous soil. The theoretical prediction of the emergence of the travelling wave solutions as intermediate asymptotics is confirmed by numerical solutions of the problem for some specific choices of the functions $ D\left( u \right)$ and $ K\left( u \right)$.

References [Enhancements On Off] (What's this?)

  • [1] G. I. Barenblatt and Y. B. Zel'dovich, Self-similar solutions as intermediate asymptotics, Ann. Rev. Fluid Mech. 4, 285-312 (1972)
  • [2] J. Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972
  • [3] R. H. Brooks and A. T. Corey, Properties of porous media affecting fluid flow, J. Irrigation Drainage Div. ASCE 92, 61-88 (1966)
  • [4] J. Canosa, Diffusion in nonlinear multiplicative media, J. Math. Phys. 10, 1862-1868 (1969)
  • [5] J. Canosa, On a nonlinear diffusion equation describing population growth, IBM J. Res. Develop. 17, 307-313 (1973) MR 0326192
  • [6] B. H. Gilding and L. A. Peletier, The Cauchy problem for an equation in the theory of infiltration, Arch. Rational Mech. Anal. 6, 127-140 (1976) MR 0408428
  • [7] R. E. Grundy, Asymptotic solution of a model non-linear convective diffusion equation, IMA J. Appl. Math. 31, 121-137 (1983) MR 728117
  • [8] S. Irmay, On the hydraulic conductivity of unsaturated soils, Trans. Amer. Geophys. Union 35, 463-467 (1954)
  • [9] N. V. Khusnytdinova, The limiting moisture profile during infiltration in to a homogeneous soil, Prikl. Mat. Mekh. 31, no. 4, 770-776 (1967) MR 0274973
  • [10] M. Krzyzanski, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 7, 131-135 (1959)
  • [11] L. A. Peletier, Asymptotic behaviour of temperature profiles of a class of non-linear heat conduction problems, Quart. J. Mech. Appl. Math. 23, 441-447 (1970) MR 0276599
  • [12] J. R. Philip, Flow in porous media, Ann. Rev. Fluid Mech. 2, 177-204 (1970)
  • [13] P. L. Sachdev, Nonlinear Diffusive Waves, Cambridge Univ. Press, 1987 MR 898438
  • [14] J. F. Scott, The longtime asymptotics of solution to the generalized Burgers equation, Proc. Roy. Soc. London Ser. A 373, 443-456 (1981) MR 603065
  • [15] J. Serrin, Asymptotic behaviour of velocity profiles in the Prandtl boundary layer theory, Proc. Roy. Soc. London. Ser. A 299, 491-507 (1967) MR 0282585
  • [16] D. Swartzendruber, The flow of water in unsaturated soils, Flow Through Porous Media (R. J. M. Dewiest, ed.), Academic Press, New York; 1969, pp. 215-292
  • [17] C. J. Van Duyn and L. A. Peletier, Asymptotic behaviour of solutions of a non-linear diffusion equation, Arch. Rational Mech. Anal. 65, 363-377 (1977) MR 0442479
  • [18] C. J. Van Duyn and L. A. Peletier, A class of similarity solutions of the nonlinear diffusion equation, Nonlinear Anal., Theory, Methods Appl. 1, 223-233 (1977)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35Q53, 76R99, 76S05

Retrieve articles in all journals with MSC: 35Q53, 76R99, 76S05

Additional Information

DOI: https://doi.org/10.1090/qam/1193660
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society