Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

The steady states of one-dimensional Sivashinsky equations


Authors: A. Novick-Cohen and L. A. Peletier
Journal: Quart. Appl. Math. 50 (1992), 759-777
MSC: Primary 35G30; Secondary 35B35, 35K35, 80A22
DOI: https://doi.org/10.1090/qam/1193665
MathSciNet review: MR1193665
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Phase plane analysis is used to calculate the number of steady states for two equations which arise in the context of directional solidification: the Sivashinsky equation and the modified Sivashinsky equation.


References [Enhancements On Off] (What's this?)

  • [BD] K. Brattkus and S. H. Davis, Cellular growth near absolute stability, Phys. Rev. B38, 11452-11460 (1988)
  • [CGS] J. Carr, M. E. Gurtin, and M. Slemrod, Structural phase transitions on a finite interval, Arch. Rational Mech. Anal. 86, 317-351 (1984) MR 759767
  • [CH] J. W. Cahn and J. H. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28, 258-267 (1958)
  • [EZ] C. M. Elliot and S. Zheng, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal. 96, 339-357 (1986) MR 855754
  • [HNCR] J. M. Hyman, A. Novick-Cohen, and P. Rosenau, A modified asymptotic approach to modeling a dilute binary alloy, Phys. Rev. B37, 7603-7608 (1988)
  • [KT] T. Kawahara and S. Toh, An approximate equation for nonlinear cross-field instability, Phys. Lett. A113, 21-24 (1985)
  • [K] Y. Kuramoto, Phase dynamics of weakly unstable periodic structures, Progr. Theor. Phys. 71, 1182-1196 (1984) MR 758596
  • [MBC] G. B. McFadden, R. F. Boisvert, and S. R. Coriell, Nonplanar interface morphologies during directional solidification of a binary alloy. II. Three dimensional computations, J. Crys. Growth 84, 371-388 (1987)
  • [NC1] A. Novick-Cohen, Instability of periodic states for the Sivashinsky equation, Quart. Appl. Math. 48, 217-224 (1990) MR 1052132
  • [NC2] A. Novick-Cohen, Stability properties of the modified Sivashinsky equation, private communication
  • [NC3] A. Novick-Cohen, On Cahn-Hilliard type equations, Nonlinear Anal. TMA 15, 797-814 (1990) MR 1077574
  • [NC4] A. Novick-Cohen, Instability in solidification fronts of dilute binary alloys: the Kuramoto-Sivashinsky equation, Physica 26D, 403-410 (1987)
  • [RD] D. S. Riley and S. H. Davis, Long-wave morphological instabilities in the directional solidification of a dilute binary alloy, SIAM J. Appl. Math. 50, 420-436 (1990) MR 1043594
  • [S] G. I. Sivashinsky, On cellular instability in the solidification of a dilute binary alloy, Physica 8D, 243-248 (1983) MR 724591
  • [UB] L. H. Ungar and R. H. Brown, Cellular interface morphologies in directional solidification. IV. The formation of deep cells, Phys. Rev. B31, 5931-5940 (1985)
  • [WvS] J. D. Weeks and W. van Saarloos, Directional solidification cells with groove for small partition coefficient, preprint
  • [Z] S. Zheng, Asymptotic behavior of solutions to the Cahn-Hilliard equation, Appl. Anal. 23, 165-184 (1986) MR 870486

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35G30, 35B35, 35K35, 80A22

Retrieve articles in all journals with MSC: 35G30, 35B35, 35K35, 80A22


Additional Information

DOI: https://doi.org/10.1090/qam/1193665
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society