Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Sur une classe de fluides non newtoniens: les solutions aqueuses de polymères


Author: C. Amrouche
Journal: Quart. Appl. Math. 50 (1992), 779-791
MSC: Primary 76A05; Secondary 35Q35, 76D05
DOI: https://doi.org/10.1090/qam/1193666
MathSciNet review: MR1193666
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is to study a nonlinear evolution system of third order representing an approximation of Navier-Stokes equations. This system describes the motion of a viscous fluid to which a small quantity of polymers is added. The consequently main relaxation properties of the resulting fluid are completely changed.


References [Enhancements On Off] (What's this?)

  • [1] C. Amrouche, Thèse de troisième cycle: Etude globale des fluides de troisième grade, Université Paris 6 (1986)
  • [2] C. Amrouche et V. Girault, Une méthode d'approximation mixte des équations de fluides non newtoniens de troisième grade, Numerische Mathematik, vol. 53, Springer-Verlag, Berlin, 1988, pp. 315-349 MR 948590
  • [3] D. Cioranescu and E. H. Ouazar, Existence and uniqueness for fluids of second grade, Non Linear Partial Differential Equations, vol. 109, Collège de France Seminar, Pitman, New York, 1983, pp. 178-197
  • [4] G. de Rham, Variétés Différentiables, Hermann, Paris, 1960
  • [5] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986 MR 851383
  • [6] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Gauthier-Villars, Paris, 1969 MR 0259693
  • [7] P. A. Oskolkov, The uniqueness and global solvability of boundary-value problems for the equations of motion for aqueous solutions of polymers, Institua im. V. A. Steklova an SSSR, Leningrad, vol. 38, 1973, pp. 98-136 MR 0377311
  • [8] P. A. Oskolkov, Solvability in the large of the first boundary-value problem for a quasilinear third-order system pertaining to the motion of a viscous fluid, Instituta im V. A. Steklova Akad. Nauk SSSR, Leningrad, vol. 27, 1972, pp. 145-160 MR 0328380
  • [9] R. Temam, Theory and Numerical Analysis of the Navier-Stokes Equations, North-Holland, Amsterdam, 1977 MR 769654

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76A05, 35Q35, 76D05

Retrieve articles in all journals with MSC: 76A05, 35Q35, 76D05


Additional Information

DOI: https://doi.org/10.1090/qam/1193666
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society