The anisotropic elastic semi-infinite strip

Authors:
M. Z. Wang, T. C. T. Ting and Gong Pu Yan

Journal:
Quart. Appl. Math. **51** (1993), 283-297

MSC:
Primary 73C05; Secondary 73B40

DOI:
https://doi.org/10.1090/qam/1218369

MathSciNet review:
MR1218369

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that the stresses of an isotropic elastic semi-infinite strip decay exponentially at large distance from the end if the sides are traction free and the loading at is in self-equilibrium. We study the associated problem for a general anisotropic elastic strip. Eight different side conditions at and eight different end conditions at are considered. With the Stroh formalism, all these different side and end conditions are encompassed in one simple formulation. It is shown that, for certain side conditions, the loading at need not be in self-equilibrium. The decay factor for the strip of monoclinic materials with the plane of symmetry at and with the sides being traction free is derived, and it has a remarkably simple expression. Numerical calculations of the smallest decay factor are presented.

**[1]**P. F. Papkovich,*The questions of the theory of bending of thin elastic plates*, Prikl. Matematika 1 Mekhanika**5**, 359-374 (1941)**[2]**J. Fadle,*Die Selbstspannungs-Eigenwertfunktionen der quadratischen Scheibe*, Ing.-Arch.**11**(1940), 125–149 (German). MR**0002307****[3]**S. P. Timoshenko and S. N. Goodier,*Theory of Elasticity*, McGraw-Hill, New York, 1970, pp. 61-63**[4]**M. W. Johnson and R. W. Little,*The semi-infinite strip*, Quart. Appl. Math.**1**, 335-344 (1965)**[5]**C. O. Horgan and J. G. Simmonds,*Asymptotic analysis of an end-loaded, transversely isotropic, elastic, semi-infinite strip weak in shear*, Internat. J. Solids Structures**27**(1991), no. 15, 1895–1914. MR**1105473**, https://doi.org/10.1016/0020-7683(91)90184-H**[6]**Cornelius O. Horgan,*On Saint-Venant’s principle in plane anisotropic elasticity*, J. Elasticity**2**(1972), no. 3, 169–180 (English, with French summary). MR**0475107**, https://doi.org/10.1007/BF00125525**[7]**C. O. Horgan,*Some remarks on Saint-Venant's principle for transversely isotropic composite*, J. Elasticity**2**, 335-339 (1972)**[8]**I. Choi and C. O. Horgan,*Saint-Venant's principle and end effects in anisotropic elasticity*, J. Appl. Mech.**44**, 424-430 (1977)**[9]**I. Choi and C. O. Horgan,*Saint-Venant end effects for plane deformation of sandwich strips*, Internat. J. Solids and Structures**14**, 187-195 (1978)**[10]**J. D. Eshelby, W. T. Read, and W. Shockley,*Anisotropic elasticity with applications to dislocation theory*, Acta Metal.**1**, 251-259 (1953)**[11]**A. N. Stroh,*Dislocations and cracks in anisotropic elasticity*, Phil. Mag. (8)**3**(1958), 625–646. MR**0094961****[12]**A. N. Stroh,*Steady state problems in anisotropic elasticity*, J. Math. and Phys.**41**(1962), 77–103. MR**0139306****[13]**K. Malén and J. Lothe,*Explicit expressions for dislocation derivatives*, Phys. Status Solidi**39**(1970), 287–296 (English, with German summary). MR**0297189****[14]**D. M. Barnett and J. Lothe,*Synthesis of the sextic and the integral formalism for dislocation, Greens functions, and surface waves in anisotropic elastic solids*, Physica Norvegica**7**, 13-19 (1973)**[15]**P. Chadwick and G. D. Smith,*Foundations of the theory of surface waves in anisotropic elastic materials*, Adv. Appl. Mech.**17**, 303-376 (1977)**[16]**T. C. T. Ting,*Effects of change of reference coordinates on the stress analyses of anisotropic elastic materials*, Internat. J. Solids and Structures**18**(1982), no. 2, 139–152. MR**639099****[17]**T. C. T. Ting,*Some identities and the structure of 𝑁ᵢ in the Stroh formalism of anisotropic elasticity*, Quart. Appl. Math.**46**(1988), no. 1, 109–120. MR**934686**, https://doi.org/10.1090/S0033-569X-1988-0934686-3**[18]**T. C. T. Ting and Chyanbin Hwu,*Sextic formalism in anisotropic elasticity for almost non-semisimple matrix*N, Internat. J. Solids and Structures**24**, 65-76 (1988)**[19]**T. C. T. Ting,*The anisotropic elastic wedge under a concentrated couple*, Quart. J. Mech. Appl. Math.**41**(1988), no. 4, 563–578. MR**980217**, https://doi.org/10.1093/qjmam/41.4.563**[20]**T. C. T. Ting,*Barnett-Lothe tensors and their associated tensors for monoclinic materials with the symmetry plane at 𝑥₃=0*, J. Elasticity**27**(1992), no. 2, 143–165. MR**1151545**, https://doi.org/10.1007/BF00041647**[21]**T. C. T. Ting,*On the orthogonal, Hermitian and positive definite properties of the matrices 𝑖𝐵⁻¹\overline{𝐵} and -𝑖𝐴⁻¹\overline{𝐴} in anisotropic elasticity*, J. Elasticity**30**(1993), no. 3, 277–284. MR**1220167**, https://doi.org/10.1007/BF00041146**[22]**R. D. Gregory,*Green’s functions, bi-linear forms, and completeness of the eigenfunctions for the elastostatic strip and wedge*, J. Elasticity**9**(1979), no. 3, 283–309. MR**547719**, https://doi.org/10.1007/BF00041100**[23]**R. D. Gregory,*The traction boundary value problem for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions*, J. Elasticity**10**(1980), no. 3, 295–327. MR**589248**, https://doi.org/10.1007/BF00127452**[24]**L. V. Kantorovich and V. I. Krylov,*Approximate methods of higher analysis*, Translated from the 3rd Russian edition by C. D. Benster, Interscience Publishers, Inc., New York; P. Noordhoff Ltd., Groningen, 1958. MR**0106537**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73C05,
73B40

Retrieve articles in all journals with MSC: 73C05, 73B40

Additional Information

DOI:
https://doi.org/10.1090/qam/1218369

Article copyright:
© Copyright 1993
American Mathematical Society