Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

On attractivity for nonautonomous systems


Author: Xinzhi Liu
Journal: Quart. Appl. Math. 51 (1993), 319-327
MSC: Primary 34D20
DOI: https://doi.org/10.1090/qam/1218371
MathSciNet review: MR1218371
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. A. Barbashin and N. N. Krasovskii, On global stability of motion, Dokl. Akad. Nauk SSSR 86, 453-456 (1952)
  • [2] T. A. Burton, Correction to “An extension of Liapunov’s direct method”, J. Math. Anal. Appl. 32 (1970), 689–691. MR 0268465, https://doi.org/10.1016/0022-247X(70)90293-3
  • [3] John R. Haddock, Stability theory for nonautonomous systems, Dynamical systems (Proc. Internat. Sympos., Brown Univ., Providence, R.I., 1974) Academic Press, New York, 1976, pp. 271–274. MR 0595700
  • [4] L. Hatvani, Attractivity theorems for non-autonomous systems of differential equations, Acta Sci. Math. (Szeged) 40 (1978), no. 3-4, 271–283. MR 515208
  • [5] László Hatvani, On the uniform attractivity of solutions of ordinary differential equations by two Lyapunov functions, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 5, 162–167. MR 1114963
  • [6] V. Lakshmikanthan and Xinzhi Liu, On asymptotic stability for non-autonomous differential systems, Nonlinear Anal. 13, 1181-1189 (1989)
  • [7] J. P. LaSalle, The stability of dynamical systems, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. With an appendix: “Limiting equations and stability of nonautonomous ordinary differential equations” by Z. Artstein; Regional Conference Series in Applied Mathematics. MR 0481301
  • [8] J. P. LaSalle, Stability of nonautonomous systems, Nonlinear Anal. 1 (1976), no. 1, 83–90. MR 0427759, https://doi.org/10.1016/0362-546X(76)90011-0
  • [9] Xinzhi Liu, Perturbing families of Lyapunov functions and asymptotic stability, J. Math. Phys. Sci. 23 (1989), no. 1, 23–34. MR 985647
  • [10] V. M. Matrosov, On the theory of stability of motion, J. Appl. Math. Mech. 26 (1962), 1506–1522. MR 0150404, https://doi.org/10.1016/0021-8928(62)90189-2
  • [11] L. Salvadori, Some contributions to asymptotic stability theory, Ann. Soc. Sci. Bruxelles Sér. I 88 (1974), 183–194 (English, with French summary). MR 0352625
  • [12] Taro Yoshizawa, Asymptotic behavior of solutions of a system of differential equations., Contributions to Differential Equations 1 (1963), 371–387. MR 0148991
  • [13] T. Yoshizawa, Attractivity in non-autonomous systems, Internat. J. Non-linear Mech. 20, 519-528 (1985)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34D20

Retrieve articles in all journals with MSC: 34D20


Additional Information

DOI: https://doi.org/10.1090/qam/1218371
Article copyright: © Copyright 1993 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website