Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Complex dynamics in metal cutting

Authors: B. S. Berger, M. Rokni and I. Minis
Journal: Quart. Appl. Math. 51 (1993), 601-612
MSC: Primary 58F12; Secondary 34C99, 58F13, 58F40, 70K50
DOI: https://doi.org/10.1090/qam/1247430
MathSciNet review: MR1247430
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The attractor associated with a system of nonlinear differential-delay equations, arising from the Wu-Liu metal cutting model, is shown to have a noninteger pointwise dimension and positive metric entropy. Projections of the attractor onto a two-dimensional plane substantiate the existence of complex dynamics. The result suggests that certain regenerative chatter states may be chaotic.

References [Enhancements On Off] (What's this?)

  • [1] Igor Grabec, Chaos generated by the cutting process, Phys. Lett. A 117 (1986), no. 8, 384–386. MR 858669, https://doi.org/10.1016/0375-9601(86)90003-4
  • [2] I. Grabec, Explanation of random vibrations in cutting on grounds of deterministic chaos, Robotics and Comp.--Integrated Manufacturing 4, 129-134 (1988)
  • [3] I. Grabec, Chaotic dynamics of the cutting process, Int. J. Mach. Tools Manufact. 28, 19-32 (1988)
  • [4] D. W. Wu and C. R. Liu, An analytical model of cutting dynamics, Parts 1 and 2, ASME J. Engrg. Indust. 17, 107-111, 112-118 (1985)
  • [5] J. Doyne Farmer, Edward Ott, and James A. Yorke, The dimension of chaotic attractors, Phys. D 7 (1983), no. 1-3, 153–180. MR 719051, https://doi.org/10.1016/0167-2789(83)90125-2
  • [6] I. Minis, E. Magrab, and I. Pandelidis, Improved methods for the prediction of chatter in turning, Part 1, ASME J. Engrg. Indust. 112, 11-20 (1990)
  • [7] A. C. Eringen, Mechanics of Continua, Wiley, New York, 1967
  • [8] Jack Hale, Theory of functional differential equations, 2nd ed., Springer-Verlag, New York-Heidelberg, 1977. Applied Mathematical Sciences, Vol. 3. MR 0508721
  • [9] P. J. Houwen and B. P. Sommeijer, Stability in linear multistep methods for pure delay equations, J. Comput. Appl. Math. 16, 55-63 (1984)
  • [10] G. Broggi, Evaluation of dimension and entropies of chaotic systems, J. Opt. Soc. Amer. B 5, 1020-1028 (1988)
  • [11] J. Holzfuss and G. Mayer-Kress, An approach to error-estimation in the application of dimension algorithms, Dimensions and entropies in chaotic systems (Pecos River Ranch, N.M., 1985) Springer Ser. Synergetics, vol. 32, Springer, Berlin, 1986, pp. 114–122. MR 836782, https://doi.org/10.1007/978-3-642-71001-8_15
  • [12] E. J. Kostelich and H. L. Swinney, Practical considerations in estimating dimension from time series data, Phys. Scripta 40, 436-441 (1989)
  • [13] J. D. Farmer, Order within chaos, Dissertation, Univ. of Calif., Santa Cruz, CA, 1981
  • [14] Remo Badii and Antonio Politi, Statistical description of chaotic attractors: the dimension function, J. Statist. Phys. 40 (1985), no. 5-6, 725–750. MR 806722, https://doi.org/10.1007/BF01009897
  • [15] P. Grassberger, Estimating the fractal dimensions and entropies of strange attractors, Chaos, Nonlinear Sci. Theory Appl., Manchester Univ. Press, Manchester, 1986, pp. 291–311. MR 848816
  • [16] J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys. 57 (1985), no. 3, 617–656. MR 800052, https://doi.org/10.1103/RevModPhys.57.617

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 58F12, 34C99, 58F13, 58F40, 70K50

Retrieve articles in all journals with MSC: 58F12, 34C99, 58F13, 58F40, 70K50

Additional Information

DOI: https://doi.org/10.1090/qam/1247430
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society