Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Complex dynamics in metal cutting


Authors: B. S. Berger, M. Rokni and I. Minis
Journal: Quart. Appl. Math. 51 (1993), 601-612
MSC: Primary 58F12; Secondary 34C99, 58F13, 58F40, 70K50
DOI: https://doi.org/10.1090/qam/1247430
MathSciNet review: MR1247430
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The attractor associated with a system of nonlinear differential-delay equations, arising from the Wu-Liu metal cutting model, is shown to have a noninteger pointwise dimension and positive metric entropy. Projections of the attractor onto a two-dimensional plane substantiate the existence of complex dynamics. The result suggests that certain regenerative chatter states may be chaotic.


References [Enhancements On Off] (What's this?)

  • [1] I. Grabec, Chaos generated by the cutting process, Phys. Lett. A 117, 384-386 (1986) MR 858669
  • [2] I. Grabec, Explanation of random vibrations in cutting on grounds of deterministic chaos, Robotics and Comp.--Integrated Manufacturing 4, 129-134 (1988)
  • [3] I. Grabec, Chaotic dynamics of the cutting process, Int. J. Mach. Tools Manufact. 28, 19-32 (1988)
  • [4] D. W. Wu and C. R. Liu, An analytical model of cutting dynamics, Parts 1 and 2, ASME J. Engrg. Indust. 17, 107-111, 112-118 (1985)
  • [5] J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors, Phys. D 7, 153-180 (1983) MR 719051
  • [6] I. Minis, E. Magrab, and I. Pandelidis, Improved methods for the prediction of chatter in turning, Part 1, ASME J. Engrg. Indust. 112, 11-20 (1990)
  • [7] A. C. Eringen, Mechanics of Continua, Wiley, New York, 1967
  • [8] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977 MR 0508721
  • [9] P. J. Houwen and B. P. Sommeijer, Stability in linear multistep methods for pure delay equations, J. Comput. Appl. Math. 16, 55-63 (1984)
  • [10] G. Broggi, Evaluation of dimension and entropies of chaotic systems, J. Opt. Soc. Amer. B 5, 1020-1028 (1988)
  • [11] J. Holzfuss and G. Mayer-Kress, An approach to error-estimation in the application of dimension algorithms, Dimensions and Entropies in Chaotic Systems, G. Mayer-Kress, ed., Springer-Verlag, New York, 1985, pp. 114-122 MR 836782
  • [12] E. J. Kostelich and H. L. Swinney, Practical considerations in estimating dimension from time series data, Phys. Scripta 40, 436-441 (1989)
  • [13] J. D. Farmer, Order within chaos, Dissertation, Univ. of Calif., Santa Cruz, CA, 1981
  • [14] R. Badii and A. Politi, Statistical description of chaotic attractors: The dimension function, J. Statist. Phys. 40, 516, 725-750 (1985) MR 806722
  • [15] P. Grassberger, Chaos, A. Y. Holden, ed., Manchester Univ. Press, Manchester, 1986 MR 848816
  • [16] J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys. 57, 3 (1985) MR 800052

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 58F12, 34C99, 58F13, 58F40, 70K50

Retrieve articles in all journals with MSC: 58F12, 34C99, 58F13, 58F40, 70K50


Additional Information

DOI: https://doi.org/10.1090/qam/1247430
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society