Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials

Authors:
Grégoire Allaire and Robert V. Kohn

Journal:
Quart. Appl. Math. **51** (1993), 643-674

MSC:
Primary 73B27; Secondary 35B27, 73K20, 73K40, 73V25

DOI:
https://doi.org/10.1090/qam/1247433

MathSciNet review:
MR1247433

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider linearly elastic composite materials made by mixing two possibly anisotropic components. Our main hypothesis is that the Hooke's laws of the two components be *well-ordered*. For given volume fractions and average strain, we present optimal upper and lower bounds on the elastic energy quadratic form. We also discuss bounds on sums of energies and bounds involving complementary energy rather than elastic energy. Our arguments are based primarily on the Hashin-Shtrikman variational principle; however, we also discuss how the same results arise from the ``translation method", making use of the analysis of Milton. Our bounds are equivalent to those established by Avelleneda and closely related to the ``trace bounds'' established by Milton and Kohn. The optimal energy bounds, however, are presented here as the extreme values of certain *convex* optimization problems. The optimal microgeometries are determined by the associated first-order optimality conditions. A similar treatment for mixtures of two incompressible, isotropic elastic materials has previously been given by Kohn and Lipton.

**[1]**G. Allaire and R. Kohn,*Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions*, Quart. Appl. Math.**LI**, 675-699 (1993) MR**1247434****[2]**G. Allaire and R. Kohn,*Optimal lower bounds on the elastic energy of a composite made from two non-well-ordered isotropic materials*, Quart. Appl. Math., in press MR**1276240****[3]**G. Allaire and R. Kohn,*Optimal design for minimum weight and compliance in plane stress using extremal microstructures*, European J. Mech. A Solids, in press MR**1343090****[4]**M. Avellaneda,*Optimal bounds and microgeometries for elastic two-phase composites*, SIAM J. Appl. Math.**47**, 1216-1228 (1987) MR**916238****[5]**M. Avellaneda,*Bounds on the effective elastic constants of two-phase composite materials*, in Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, H. Brezis and J.-L. Lions (Eds.), vol. 10, Longman Scientific, 1991, pp. 1-34 MR**1131816****[6]**A. Bensoussan, J.-L. Lions, and G. Papanicolaou,*Asymptotic Analysis for Periodic Structures*, North-Holland, Amsterdam, 1978 MR**503330****[7]**F. H. Clarke,*Optimization and Non-Smooth Analysis*, John Wiley and Sons, New York, 1983 MR**709590****[8]**G. Dal Maso and R. Kohn,*The local character of G-closure*, in preparation**[9]**I. Ekeland and R. Temam,*Convex Analysis and Variational Problems*, North-Holland, Amsterdam, 1976 MR**0463994****[10]**G. Francfort and J. Marigo,*Stable damage evolution in a brittle continuous medium*, European J. Mech. A Solids, in press MR**1220340****[11]**G. Francfort and F. Murat,*Homogenization and optimal bounds in linear elasticity*, Arch. Rational Mech. Anal.**94**, 307-334 (1986) MR**846892****[12]**M. Giaquinta,*Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems*, Princeton Univ. Press, Princeton, NJ, 1983 MR**717034****[13]**L. Gibiansky and A. Cherkaev,*Design of composite plates of extremal rigidity*, Ioffe Physicotechnical Institute preprint 914, 1984; and*Microstructures of composites of extremal rigidity and exact estimates of the associated energy density*, Ioffe Physicotechnical Institute preprint 1115, 1987 (in Russian) MR**1493045****[14]**K. Golden and G. Papanicolaou,*Bounds for effective parameters of heterogeneous media by analytic continuation*, Comm. Math. Phys.**90**, 473-491 (1983) MR**719428****[15]**Z. Hashin and S. Shtrikman,*A variational approach to the theory of the elastic behavior of multiphase materials*, J. Mech. Phys. Solids**11**, 127-140 (1963) MR**0159459****[16]**R. Hill,*New derivations of some elastic extremum principles*, Progress in Applied Mechanics--The Prager Anniversary Volume, Macmillan, New York, 1963, pp. 93-106 MR**0160359****[17]**Y. Kantor and D. Bergman,*Improved rigorous bounds on the effective elastic moduli of a composite material*, J. Mech. Phys. Solids**32**, 41-62 (1984)**[18]**A. Khachaturyan,*Theory of Structural Transformations in Solids*, John Wiley and Sons, New York, 1983**[19]**R. Kohn,*Recent progress in the mathematical modeling of composite materials*, Composite Material Response: Constitutive Relations and Damage Mechanisms, G. Sih et al. (Eds.), Elsevier, New York, 1988, pp. 155-177**[20]**R. Kohn,*Relaxation of a double-well energy*, Continuum Mechanics and Thermodynamics**3**, 193-236 (1991) MR**1122017****[21]**R. Kohn and J. Lu, in preparation**[22]**R. Kohn and R. Lipton,*Optimal bounds for the effective energy of a mixture of isotropic, incompressible, elastic materials*, Arch. Rational Mech. Anal.**102**, 331-350 (1988) MR**946964****[23]**E. Kostlan and J. Morris,*The preferred habit of a coherent thin-plate inclusion in an anisotropic elastic solid*, Acta Metall.**35**, 2167-2175 (1987)**[24]**R. Lipton,*On the behavior of elastic composites with transverse isotropic symmetry*, J. Mech. Phys. Solids**39**, 663-681 (1991) MR**1112738****[25]**R. Lipton,*Bounds and perturbation series for incompressible elastic composites with transverse isotropic symmetry*, J. Elasticity**27**, 193-225 (1992) MR**1158215****[26]**K. Lurie and A. Cherkaev,*Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion*, Proc. Roy. Soc. Edinburgh Sect. A**99**, 71-87 (1984) MR**781086****[27]**G. Milton,*Modeling the properties of composites by laminates*, Homogenization and Effective Moduli of Materials and Media, J. Ericksen et al. (Eds.), Springer-Verlag, New York, 1986, pp. 150-174 MR**859415****[28]**G. Milton,*On characterizing the set of possible effective tensors of composites: the variational method and the translation method*, Comm. Pure Appl. Math.**43**, 63-125 (1990) MR**1024190****[29]**G. Milton and R. Kohn,*Variational bounds on the effective moduli of anisotropic composites*, J. Mech. Phys. Solids**36**, 597-629 (1988) MR**969257****[30]**F. Murat,*H-convergence*, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes, 1978**[31]**F. Murat,*A survey on compensated compactness*, Contributions to the Modern Calculus of Variations, L. Cesari (Ed.), Pitman, New York, 1987, pp. 145-183 MR**894077****[32]**A. Norris,*A differential scheme for the effective moduli of composites*, Mech. Mater.**4**, 1-16 (1985)**[33]**G. Papanicolaou and S. Varadhan,*Boundary value problems with rapidly oscillating random coefficients*, Random Fields, Colloq. Math. Soc. János Bolyai, vol. 27, North-Holland, Amsterdam, 1982, pp. 835-873 MR**712714****[34]**A. Roitburd,*The domain structure of crystals formed in the solid phase*, Sov. Phys.-Solid State**10**, 2870-2876 (1969)**[35]**E. Sanchez-Palencia,*Non homogeneous media and vibration theory*, Lecture Notes in Phys., vol. 127, Springer-Verlag, New York, 1980 MR**578345****[36]**P. Suquet,*Une méthode duale en homogénéisation: Application aux milieux élastiques*, J. Mech. Theoret. Appl., special issue, 79-98 (1982) MR**670347****[37]**L. Tartar,*Estimation de coefficients homogénéisés*, Computing Methods in Applied Sciences and Engineering, R. Glowinski and J.-L. Lions (Eds.), Lecture Notes in Math., vol. 704, Springer-Verlag, New York, 1978, pp. 364-373 MR**540123****[38]**L. Tartar,*Estimations fines des coefficients homogénéisés*, Ennio de Giorgi's Colloquium, P. Kree (Ed.), Pitman Res. Notes in Math. Ser., vol. 125, Longman Sci. Tech., Harlow, 1985, pp. 168-187 MR**909716****[39]**L. Tartar,*H-measures and small amplitude homogenization*, Random Media and Composites, R. Kohn and G. Milton (Eds.), SIAM, Philadelphia, PA, 1989, pp. 89-99 MR**1059290****[40]**L. Walpole,*On bounds for the overall elastic moduli of inhomogeneous systems*. I, J. Mech. Phys. Solids**14**, 151-162 (1966)**[41]**J. Willis,*Variational and related methods for the overall properties of composite materials*, C.-S. Yih (Ed.), Adv. in Appl. Mech.**21**, 2-78 (1981) MR**706965****[42]**C.-T. Wu and R. McCullough,*Constitutive relationships for the heterogeneous materials*, Developments in Composite Materials, Applied Science Publishers, 1977, pp. 119-187**[43]**V. Zhikov,*On estimates for the trace of an averaged tensor*, Soviet Math. Dokl.**37**, 456-459 (1988) MR**943734****[44]**V. Zhikov, S. Kozlov, O. Oleinik, and K. Ngoan,*Averaging and G-convergence of differential operators*, Russian Math. Surveys**34**, 69-147 (1979) MR**562800**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73B27,
35B27,
73K20,
73K40,
73V25

Retrieve articles in all journals with MSC: 73B27, 35B27, 73K20, 73K40, 73V25

Additional Information

DOI:
https://doi.org/10.1090/qam/1247433

Article copyright:
© Copyright 1993
American Mathematical Society