Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Quenching profiles for one-dimensional semilinear heat equations


Authors: Stathis Filippas and Jong-Shenq Guo
Journal: Quart. Appl. Math. 51 (1993), 713-729
MSC: Primary 35B40; Secondary 35K55, 35K65
DOI: https://doi.org/10.1090/qam/1247436
MathSciNet review: MR1247436
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We are interested in the local behavior, near a quenching point, of a solution of a semilinear heat equation with singular powerlike absorption. Using the method of Herrero and Velazquez, we obtain a precise description of the spatial profile of the solution in a neighborhood of a quenching point at the quenching time, under certain assumptions on the initial data.


References [Enhancements On Off] (What's this?)

  • [1] S. Angenent, The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390, 79-96 (1988) MR 953678
  • [2] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, New York, 1981 MR 635782
  • [3] K. Deng and H. A. Levine, On the blowup of $ {u_t}$ at quenching, Proc. Amer. Math. Soc. 106, 1049-1056 (1989) MR 969520
  • [4] M. Fila and J. Hulshof, A note on the quenching rate, Proc. Amer. Math. Soc. 112, 473-477 (1991) MR 1055772
  • [5] M. Fila, J. Hulshof, and P. Quittner, The quenching problem on N-dimensional ball, Proceedings of the International Conference on Nonlinear Diffusion Equations and Their Equilibrium States (edited by N. G. Lloyd, J. Serrin, W.-M. Ni, and L. A. Peletier), Gregynog, Wales, August 1989
  • [6] M. Fila and B. Kawohl, Asymptotic analysis of quenching problems, Rocky Mt. J. Math. 22, 563-577 (1992) MR 1180720
  • [7] S. Filippas and R. V. Kohn, Refined asymptotics for the blow up of $ {u_t} - \Delta u = {u^p}$ , Comm. Pure Appl. Math. 45, 821-869 (1992) MR 1164066
  • [8] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34, 425-447 (1985) MR 783924
  • [9] Y. Giga and R. V. Kohn, Asymptoticlly self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38, 297-319 (1985) MR 784476
  • [10] Y. Giga and R. V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 36, 1-40 (1987) MR 876989
  • [11] Y. Giga and R. V. Kohn, Nondegeneracy of blow-up for semilinear heat equation, Comm. Pure Appl. Math. 42, 845-884 (1989) MR 1003437
  • [12] J.-S. Guo, On the quenching behavior of the solution of a semilinear parabolic equation, J. Math. Anal. Appl. 151, 58-79 (1990) MR 1069448
  • [13] J.-S. Guo, On the semilinear elliptic equation $ \Delta w - \frac{1}{2}y.\nabla w + \lambda w - {w^{ - \beta }} = 0$ in $ {R^n}$ , Chinese J. Math. 19, 355-377 (1991) MR 1141255
  • [14] J.-S. Guo, On the quenching rate estimate, Quart. Appl. Math. 49, 747-752 (1991) MR 1134750
  • [15] J.-S. Guo, The critical length for a quenching problem, Nonlinear Analysis 18, 507-516 (1992) MR 1154477
  • [16] M. A. Herrero and J. J. L. Velazquez, Blow-up behavior of one-dimensional semilinear parabolic equations, Annales Inst. Henri Poincaré, Sec. C: Analyse Nonlineaire (to appear) MR 1220032
  • [17] M. A. Herrero and J. J. L. Velazquez, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations 5, 973-997 (1992) MR 1171974
  • [18] M. A. Herrero and J. J. L. Velazquez, Blow-up profiles in one-dimensional semilinear parabolic problems, Comm. Partial Differential Equations 17, 205-219 (1992) MR 1151261
  • [19] M. A. Herrero and J. J. L. Velazquez, Generic behavior of one-dimensional blowup patterns, Ann. Scuola Normale Sup. Pisa (to appear) MR 1205406
  • [20] H. A. Levine, Quenching, nonquenching, and beyond quenching for solutions of some parabolic equations, Annali di Mat. Pura et Applicata 155, 243-260 (1990) MR 1042837
  • [21] H. A. Levine, Advances in Quenching, Proceedings of the International Conference on Nonlinear Diffusion Equations and Their Equilibrium States (edited by N. G. Lloyd, J. Serrin, W.-M. Ni, and L. A. Peletier), Gregynog, Wales, August 1989
  • [22] H. A. Levine, The role of critical exponents in blowup theorems, SIAM Review 32, 262-288 (1990) MR 1056055
  • [23] J. J. L. Velazquez, Local behavior near blow-up points for semilinear parabolic equations, J. Differential Equations (to appear) MR 1251859

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 35B40, 35K55, 35K65

Retrieve articles in all journals with MSC: 35B40, 35K55, 35K65


Additional Information

DOI: https://doi.org/10.1090/qam/1247436
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society