Global large solutions to initial-boundary value problems in one-dimensional nonlinear thermoviscoelasticity

Author:
Song Jiang

Journal:
Quart. Appl. Math. **51** (1993), 731-744

MSC:
Primary 35Q72; Secondary 73B30, 73F15

DOI:
https://doi.org/10.1090/qam/1247437

MathSciNet review:
MR1247437

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Initial boundary value problems in one-dimensional nonlinear thermo-viscoelasticity are considered, and the existence of global classical solutions is established by means of the Leray-Schauder fixed point theorem.

**[1]**C. M. Dafermos,*Contemporary issues in the dynamic behavior of continuous media*, Lefschetz Center for Dynamical Systems Report, Brown Univ., Providence, RI, 1985**[2]**-,*Global smooth solutions to the initial boundary value problem for the equations of one-dimensional nonlinear thermoviscoelasticity*, SIAM J. Math. Anal.**13**, 397-408 (1982) MR**653464****[3]**C. M. Dafermos and L. Hsiao,*Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity*, Nonlinear Anal. T.M.A.**6**, 435-454 (1982) MR**661710****[4]**A. Friedman,*Partial Differential Equations of Parabolic Type*, Prentice-Hall, Englewood Cliffs, NJ, 1964 MR**0181836****[5]**S. Kawashima and T. Nishida,*Global solutions to the initial value problem for the equations of one-dimensional motion of viscous polytropic gases*, J. Math. Kyoto Univ.**21**, 825-837 (1981) MR**637519****[6]**B. Kawohl,*Global existence of large solutions to initial boundary value problems for a viscous, heat-conducting, one-dimensional real gas*, J. Differential Equations**58**, 76-103 (1985) MR**791841****[7]**A. V. Kazhykhov,*Sur la solubilité globale des problémes monodimensionnels aux valeurs initialeslimitées pour les équations d'un gaz visqueux et calorifére*, C. R. Acad. Sci. Paris Sér. A**284**, 317-320 (1977) MR**0428905****[8]**A. V. Kazhikhov and V. V. Shelukhin,*Unique global solution with respect to time of initial boundary value problems for one-dimensional equations of a viscous gas*, J. Appl. Math. Mech.**41**, 273-282 (1977) MR**0468593****[9]**J. U. Kim,*Global existence of solutions of the equations of one-dimensional thermoviscoelasticity with initial data in BV and*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**10**, 357-427 (1983) MR**739917****[10]**O. A. Ladyzenskaya, V. A. Solonnikov, and N. N. Uraĺceva,*Linear and Quasilinear Equations of Parabolic Type*, transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, RI, 1968 MR**0241822****[11]**T. Nagasawa,*On the one-dimensional motion of the polytropic ideal gas nonfixed on the boundary*, J. Differential Equations**65**, 49-67 (1986) MR**859472****[12]**-,*On the outer pressure problem of the one-dimensional polytropic ideal gas*, Japan J. Appl. Math.**5**, 53-85 (1988) MR**924744****[13]**T. Nishida,*Equations of motion of compressible viscous fluids*, Patterns and Waves--Qualitative Analysis of Nonlinear Differential Equations (T. Nishida, M. Mimura, and H. Fujii, eds.), Kinokuniya/North-Holland, Tokyo/Amsterdam, 1986 MR**882377****[14]**M. Okada and S. Kawashima,*On the equations of one-dimensional motion of compressible viscous fluids*, J. Math. Kyoto Univ.**23**, 55-71 (1983) MR**692729****[15]**M. H. Protter and H. F. Weinberger,*Maximum Principles in Differential Equations*, Prentice-Hall, Englewood Cliffs, NJ, 1967 MR**0219861****[16]**S. Zheng and W. Shen,*Global smooth solutions to the Cauchy problem of equations of one-dimensional nonlinear thermoviscoelasticity*, J. Partial Differential Equations**2**, 26-38 (1989) MR**1010771**

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q72,
73B30,
73F15

Retrieve articles in all journals with MSC: 35Q72, 73B30, 73F15

Additional Information

DOI:
https://doi.org/10.1090/qam/1247437

Article copyright:
© Copyright 1993
American Mathematical Society