Collapse of spherical bubbles in fluids with nonlinear viscosity

Authors:
M. A. Brutyan and P. L. Krapivsky

Journal:
Quart. Appl. Math. **51** (1993), 745-749

MSC:
Primary 76D99

DOI:
https://doi.org/10.1090/qam/1247438

MathSciNet review:
MR1247438

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An analysis is given of the collapse of a spherical bubble in a large body of a viscous incompressible fluid with strain-dependent nonlinear viscosity. Two types of asymptotic behaviors are found analytically, namely the collapse over finite time and viscous damping over infinite time.

**[1]**Lord Rayleigh,*On the pressure developed in a liquid during the collapse of a spherical cavity*, Philos. Mag.**34**, 94-96 (1917)**[2]**Garrett Birkhoff and E. H. Zarantonello,*Jets, wakes, and cavities*, Academic Press Inc., Publishers, New York, 1957. MR**0088230****[3]**Milton S. Plesset,*Bubble dynamics*, Cavitation in Real Liquids (Proc. Sympos., General Motors Res. Lab., War ren, Mich., 1962) Elsevier, Amsterdam, 1964, pp. 1–18. MR**0183201****[4]**D. J. Evans and G. P. Morris,*Statistical Mechanics of Nonequilibrium Liquids*, Academic Press, New York, 1990**[5]**M. P. Allen and D. Tildesley,*Computer Simulation of Liquids*, Clarendon, Oxford, 1987**[6]**M. S. Plesset and A. Prosperetti,*Bubble dynamics and cavitation*, Ann. Rev. Fluid Mech.**9**, 145-185 (1977)**[7]**H. S. Fogler and J. D. Goddard,*Collapse of spherical cavities in viscoelastic fluids*, Phys. Fluids**13**, 1135-1141 (1970)**[8]**A. Prosperetti,*A generalization of the Rayleigh-Plesset equation of bubble dynamics*, Phys. Fluids**25**, 409-410 (1982)**[9]**R. B. Bird, R. C. Armstrong, and O. Hassager,*Dynamics of Polymeric Liquids, Vol*. 1, Fluid Mechanics, 2nd ed., Wiley, New York, 1987**[10]**C. Truesdell and R. G. Muncaster,*Fundamentals of Maxwell’s kinetic theory of a simple monatomic gas*, Pure and Applied Mathematics, vol. 83, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Treated as a branch of rational mechanics. MR**554086****[11]**R. Zwanzig,*Nonlinear shear viscosity of a gas*, J. Chem. Phys.**71**, 4416-4420 (1979)**[12]**A. Santos, J. J. Brey, and J. M. Dufty,*Divergence of the Chapman-Enskog expansion*, Phys. Rev. Lett.**56**, 1571-1574 (1986); J. Gomez Ordonez, J. J. Brey, and A. Santos,*Velocity distribution function of a dilute gas under uniform shear flow. A comparison between a Monte Carlo simulation method and the BGK equation*, Phys. Rev. A (3)**41**, 810-815 (1990)**[13]**J. Gomez Ordonez, J. J. Brey, and A. Santos,*Shear-rate dependence of the viscosity for dilute gases*, Phys. Rev. A (3)**39**, 3038-3040 (1989)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76D99

Retrieve articles in all journals with MSC: 76D99

Additional Information

DOI:
https://doi.org/10.1090/qam/1247438

Article copyright:
© Copyright 1993
American Mathematical Society