Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



On the classification of solutions to the zero-surface-tension model for Hele-Shaw free boundary flows

Authors: Y. E. Hohlov and S. D. Howison
Journal: Quart. Appl. Math. 51 (1993), 777-789
MSC: Primary 76S05; Secondary 35Q30, 76D99
DOI: https://doi.org/10.1090/qam/1247441
MathSciNet review: MR1247441
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the classification of solutions to the zero-surface-tension model for Hele-Shaw flows in bounded and unbounded regions with suction and injection. We use results from the theory of univalent functions to derive estimates for certain geometric properties of the fluid region in the injection case.

References [Enhancements On Off] (What's this?)

  • [1] I. A. Aleksandrov, Parametric Continuations in the Theory of Univalent Functions, ``Nauka", Moscow, (1976) (in Russian) MR 0480952
  • [2] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154, 137-152 (1985) MR 772434
  • [3] L. A. Galin, Dokl. Akad. Nauk SSSR 47, 246-249 (1945) (Russian)
  • [4] P. L. Duren, Univalent Functions, Springer, Berlin, 1983 MR 708494
  • [5] G. M. Golusin, Geometric Theory of Functions of a Complex Variable, 2nd ed., ``Nauka", Moscow; English transl., Transl. Math. Monographs, Amer. Math. Soc., Providence, RI, vol. 26, 1969 MR 0247039
  • [6] Yu. E. Hohlov, Time-dependent free boundary problems: Explicit solutions. I, Preprint MIAN, No. 14, 52 pp., 1990
  • [7] -, Soviet Math. Dokl. 315, 80-83 (1990) (Russian)
  • [8] S. D. Howison, Cusp development in Hele-Shaw flow with a free surface, SIAM J. Appl. Math. 46, 20-26 (1986) MR 821438
  • [9] -, Bubble growth in porous media and Hele-Shaw cells, Proc. Roy. Soc. Edinburgh A102, 141-148 (1986)
  • [10] -, Complex variable methods in Hele-Shaw moving boundary problems, European J. Appl. Math. 3, 209-224 (1992) MR 1182213
  • [11] S. D. Howison, J. R. Ockendon, and A. A. Lacey, Singularity development in moving-boundary problems, Quart. J. Mech. Appl. Math. 38, 343-360 (1985) MR 800769
  • [12] S. D. Howison, A. A. Lacey, and J. R. Ockendon, Hele-Shaw free-boundary problems with suction, Quart. J. Mech. Appl. Math. 41, 183-193 (1988) MR 957040
  • [13] P. P. Kufarev, Dokl. Akad. Nauk SSSR 60, 1333-1334 (1948)
  • [14] A. A. Lacey, S. D. Howison, J. R. Ockendon, and P. Wilmott, Irregular morphologies in unstable Hele-Shaw free-boundary problems, Quart. J. Mech. Appl. Math. 43, 387-405 (1990) MR 1070964
  • [15] P. Ya. Polubarinova-Kochina, Dokl. Akad. Nauk SSSR 47, 254-257 (1945) (Russian)
  • [16] Chr. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Göttingen, 1975. MR 0507768
  • [17] S. Richardson, Some Hele-Shaw flows with time-dependent free boundaries, J. Fluid Mech. 102, 263-278 (1981) MR 612095
  • [18] P. G. Saffman and G. I. Taylor, On the penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. London A245, 312-329 (1958)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76S05, 35Q30, 76D99

Retrieve articles in all journals with MSC: 76S05, 35Q30, 76D99

Additional Information

DOI: https://doi.org/10.1090/qam/1247441
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society