An approximation framework for equations in linear viscoelasticity with strongly singular kernels

Authors:
R. H. Fabiano and K. Ito

Journal:
Quart. Appl. Math. **52** (1994), 65-81

MSC:
Primary 34K30; Secondary 45K05, 47D06, 47N20, 65R20, 73F15

DOI:
https://doi.org/10.1090/qam/1262320

MathSciNet review:
MR1262320

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider equations that arise in linear viscoelastic models. Within the context of linear semigroup theory we present an approximation framework for these equations. A relevant convergence result is proved using the Trotter-Kato theorem. This work extends previous results that did not apply to equations with strongly singular kernels.

**[1]**H. T. Banks and J. A. Burns,*Hereditary control problems: numerical methods based on averaging approximations*, SIAM J. Control Optim.**16**, 169-208 (1978)**[2]**H. T. Banks, R. H. Fabiano, and Y. Wang,*Estimation of Boltzmann damping coefficients in beam models*, LCDS/CCS Report 88-13, Brown University, Providence, RI, 1988**[3]**H. T. Banks, R. H. Fabiano, Y. Wang, D. J. Inman, and H. Cudney,*Spatial versus time hysteresis in damping mechanisms*, 27th IEEE Conference on Decision and Control, 1988, pp. 1674-1677**[4]**J. A. Burns and R. H. Fabiano,*Feedback control of a hyperbolic partial differential equation with viscoelastic damping*, Control Theory Adv. Tech.**5**, 157-188 (1989)**[5]**J. A. Burns, E. M. Cliff, Z. Y. Liu, and R. E. Miller,*Control of a thermoviscoelastic system*, 27th IEEE Conference on Decision and Control, 1988, pp. 1249-1252**[6]**J. A. Burns, Z. Y. Liu, and R. E. Miller,*Approximations of thermoelastic and viscoelastic control systems*, Numer. Funct. Anal. Optim.**12**, 79-135 (1991)**[7]**C. M. Dafermos,*Asymptotic stability in viscoelasticity*, Arch. Rational Mech. Anal.**37**, 297-308 (1979)**[8]**C. M. Dafermos,*An abstract Volterra equation with applications to linear viscoelasticity*, J. Differential Equations**7**, 554-569 (1970)**[9]**C. M. Dafermos,*Contraction semigroups and trend to equilibrium in continuum mechanics*, Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes in Math., no. 503, Springer-Verlag, New York, 1976, pp. 295-306**[10]**W. Desch and R. K. Miller,*Exponential stabilization of Volterra integrodifferential equations in Hilbert spaces*, J. Differential Equations**70**, 366-389 (1987)**[11]**R. H. Fabiano and K. Ito,*Semigroup theory and numerical approximation for equations in linear viscoelasticity*, SIAM J. Math. Anal.**21**, 374-393 (1990)**[12]**R. H. Fabiano and K. Ito,*Semigroup theory in linear viscoelasticity: Weakly and strongly singular kernels*, Internat. Ser. Numer. Math., vol. 91, Birkhäuser, Basel, 1989, pp. 109-121**[13]**K. B. Hannsgen, Y. Renardy, and R. L. Wheeler,*Effectiveness and robustness with respect to time delays of boundary feedback stabilization in one-dimensional viscoelasticity*, SIAM J. Control Optim.**26**, 1200-1234 (1988)**[14]**K. B. Hannsgen and R. L. Wheeler,*Time delays and boundary feedback stabilization in one-dimensional viscoelasticity*, Distributed Parameter Systems, Lecture Notes in Control and Inform. Sci., Springer, New York, 1987, pp. 136-152**[15]**T. Kato,*Perturbation Theory for Linear Operators*, Springer-Verlag, Berlin, 1976**[16]**A. Pazy,*Semigroups of Linear Operators and Applications to Partial Differential Equations*, Springer, New York, 1983**[17]**H. Tanabe,*Equations of Evolution*, Pitman, London, 1979**[18]**J. A. Walker,*Dynamical Systems and Evolution Equations*, Plenum Press, New York, 1980

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
34K30,
45K05,
47D06,
47N20,
65R20,
73F15

Retrieve articles in all journals with MSC: 34K30, 45K05, 47D06, 47N20, 65R20, 73F15

Additional Information

DOI:
https://doi.org/10.1090/qam/1262320

Article copyright:
© Copyright 1994
American Mathematical Society