Pure azimuthal shear of compressible non-linearly elastic circular tubes

Authors:
Debra A. Polignone and Cornelius O. Horgan

Journal:
Quart. Appl. Math. **52** (1994), 113-131

MSC:
Primary 73G05; Secondary 73C50, 73K05

DOI:
https://doi.org/10.1090/qam/1262323

MathSciNet review:
MR1262323

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The azimuthal (or circular) shear problem for a hollow circular cylinder, composed of homogeneous isotropic *compressible* nonlinearly elastic material, is described. The inner surface of the tube is bonded to a rigid cylinder. The deformation may be achieved either by applying a uniformly distributed azimuthal shear traction on the outer surface together with zero radial traction (Problem 1) *or* by subjecting the outer surface to a prescribed angular displacement, with zero radial displacement (Problem 2). For an arbitrary compressible material, the cylinder will undergo both a radial and angular deformation. These axisymmetric fields are governed by a coupled pair of nonlinear ordinary differential equations, one of which is second-order and the other first-order. The class of materials for which *pure azimuthal shear* (i.e., a deformation with zero radial displacement) is possible is described. The corresponding angular displacement and stresses are determined explicitly. Specific material models are used to illustrate the results.

**[1]**D. A. Polignone and C. O. Horgan,*Pure torsion of compressible nonlinearly elastic circular cylinders*, Quart. Appl. Math.**49**, 591-607 (1991)**[2]**D. A. Polignone and C. O. Horgan,*Axisymmetric finite anti-plane shear of compressible nonlinearly elastic circular tubes*, Quart. Appl. Math.**50**, 323-341 (1992)**[3]**J. L. Ericksen,*Deformations possible in every compressible, isotropic, perfectly elastic material*, J. Math. Phys.**34**, 126-128 (1955)**[4]**P. K. Currie and M. Hayes,*On non-universal finite elastic deformations, Finite Elasticity*, (D. E. Carlson and R. T. Shield, eds.), Proc. IUTAM Sympos., Martinus Nijhoff, The Hague, 1982, pp. 143-150**[5]**P. J. Blatz and W. L. Ko,*Application of finite elasticity to the deformation of rubbery materials*, Trans. Soc. Rheol**6**, 223-251 (1962)**[6]**F. John,*Plane elastic waves of finite amplitude: Hadamard materials and harmonic materials*, Comm. Pure Appl. Math.**19**, 309-341 (1966)**[7]**R. S. Rivlin,*Large elastic deformations of isotropic materials*. VI:*Further results in the theory of torsion, shear and flexure*, Philos. Trans. Roy. Soc. London Ser.**A 242**, 173-195 (1949)**[8]**A. E. Green and W. Zerna,*Theoretical Elasticity*, Oxford Univ. Press, London, 1968**[9]**R. W. Ogden, P. Chadwick, and E. W. Haddon,*Combined axial and torsional shear of a tube of incompressible isotropic elastic material*, Quart. J. Mech. Appl. Math.**26**, 34-41 (1973)**[10]**R. W. Ogden,*Non-linear Elastic Deformations*, Ellis Horwood, Chichester, 1984**[11]**J. E. Adkins,*Some general results in the theory of large elastic deformations*, Proc. Roy. Soc. London Ser. A**231**, 75-99 (1955)**[12]**R. W. Ogden and D. A. Isherwood,*Solution of some finite plane-strain problems for compressible elastic solids*, Quart. J. Mech. Appl. Math.**31**, 219-249 (1978)**[13]**M. M. Carroll and C. O. Horgan,*Finite strain solutions for a compressible elastic solid*, Quart. Appl. Math.**48**, 767-780 (1990)**[14]**J. G. Simmonds and P. Warne,*Azimuthal shear of compressible or incompressible, rubber-like, polar-orthotropic tubes of infinite extent*, Internat. J. Nonlinear Mechanics**27**, 447-464 (1992)**[15]**C. Truesdell and W. Noll,*The non-linear field theories of mechanics*, Handbuch der Physik III/3, (S. Flugge, ed.), Springer, Berlin, 1965**[16]**A. Ertepinar,*Finite deformations of compressible hyperelastic tubes subjected to circumferential shear*, Internat. J. Engr. Sci.**23**, 1187-1195 (1985)**[17]**A. Ertepinar,*On the finite circumferential shearing of compressible hyperelastic tubes*, Internat. J. Engr. Sci.**28**, 889-896 (1990)**[18]**M. Levinson and I. W. Burgess,*A comparison of some simple constitutive relations for slightly compressible rubber-like materials*, Internat. J. Mech. Sci.**13**, 563-572 (1971)**[19]**Y. C. Fung,*Biomechanics, Mechanical Properties of Living Tissues*, Springer-Verlag, Berlin, 1981**[20]**M. F. Beatty, Topics in finite elasticity.*Hyperelasticity of rubber, elastomers, and biological tissues-with examples*, Appl. Mech. Reviews**40**, 1699-1734 (1987)**[21]**D. M. Haughton,*Circular shearing of compressible elastic cylinders*, University of Glasgow, Department of Mathematics, preprint (1991)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73G05,
73C50,
73K05

Retrieve articles in all journals with MSC: 73G05, 73C50, 73K05

Additional Information

DOI:
https://doi.org/10.1090/qam/1262323

Article copyright:
© Copyright 1994
American Mathematical Society