Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Thermodynamics and the supercritical Stefan equations with nucleations


Author: Morton E. Gurtin
Journal: Quart. Appl. Math. 52 (1994), 133-155
MSC: Primary 80A22; Secondary 73B30
DOI: https://doi.org/10.1090/qam/1262324
MathSciNet review: MR1262324
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] M. Bertsch, P. De. Mottoni, and L. A. Peletier, Degenerate diffusion and the Stefan problem, Nonlin. Anal. 8, 1311-1336 (1984)
  • [2] M. Bertsch, P. De. Mottoni, and L. A. Peletier, The Stefan problem with heating: Appearance and disappearance of a mushy region, Trans. Amer. Math. Soc. 293, 677-691 (1986)
  • [3] B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal. 13, 245-261 (1963)
  • [4] A. B. Crowley and J. R. Ockendon, Modelling mushy regions, Appl. Sci. Res. 44, 1-7 (1987)
  • [5] C. M. Dafermos, Hyperbolic systems of balance laws, Systems of Nonlinear Partial Differential Equations, J. M. Ball ed., Reidel, Dordrecht, 1983
  • [6] J. N. Dewynne, S. D. Howison, J. R. Ockendon, and W. Xie, Asymptotic behavior of solutions to the Stefan problem with a kinetic condition at the free boundary, J. Austral. Math. Soc. Ser. B 31, 81-96 (1989)
  • [7] A. Fasano and M. Primicerio, General free boundary problems for the heat equation, Parts 1-3, J. Math. Anal. Appl. 57, 694-723; 58, 202-231; 59, 1-14 (1977)
  • [8] A. Fasano, M. Primicerio, S. D. Howison, and J. R. Ockendon, Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension, Quart. Appl. Math. 48, 153-168 (1990)
  • [9] A. Fasano, M. Primicerio, and A. A. Lacey, New results on some classical parabolic free boundary problems, Quart. Appl. Math. 38, 439-460 (1981)
  • [10] A. Friedman, Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal. 61, 97-125 (1976)
  • [11] M. E. Gurtin, Multiphase thermomechanics with interfacial structure. 1 . Heat conduction and the capillarity balance law, Arch. Rational. Mech. Anal. 104, 195-221 (1988)
  • [12] S. D. Howison, J. R. Ockendon, and A. A. Lacey, Singularity development in moving boundary problems, Quart. Appl. Math. 38, 343-360 (1985)
  • [13] A. A. Lacey and A. B. Taylor, A mushy region in a Stefan problem, IMA J. Appl. Math. 30, 303-314 (1983)
  • [14] S. Luckhaus, Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math. 1, 101-111 (1990)
  • [15] B. Sherman, A general one-phase Stefan problem, Quart. Appl. Math. 28, 377-382 (1970)
  • [16] M. Ughi, A melting problem with a mushy region, IMA J. Appl. Math. 33, 135-152 (1984)
  • [17] A. Visintin, A new model for supercooling and superheating effects, IMA J. Appl. Math. 36, 141-157 (1984)
  • [18] A. Visintin, Stefan problem with surface tension, Mathematical Models for Phase Change Problems, J. F. Rodrigues ed., Birkhäuser Verlag, New York, 1989
  • [19] A. Visintin, Surface tension effects in phase transition, Material Instabilities in Continuum Mechanics, J. M. Ball ed., Clarendon Press, New York, 1988

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 80A22, 73B30

Retrieve articles in all journals with MSC: 80A22, 73B30


Additional Information

DOI: https://doi.org/10.1090/qam/1262324
Article copyright: © Copyright 1994 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website