The energy release rate for transient dynamic mode crack propagation in a general linearly viscoelastic body

Authors:
J. M. Herrmann and J. R. Walton

Journal:
Quart. Appl. Math. **52** (1994), 201-228

MSC:
Primary 73M25; Secondary 73F15

DOI:
https://doi.org/10.1090/qam/1276234

MathSciNet review:
MR1276234

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A mathematical model of a semi-infinite mode I crack that suddenly begins to propagate at constant speed is constructed for a general linear viscoelastic body. Expressions for the Laplace transform of the stress, displacement, and stress intensity factor are derived for general loadings. A Barenblatt type process zone is incorporated into the model and used to determine the total energy flux into the crack tip. This energy release rate, , is constructed for two specific loadings: one following the advancing crack tip, the second remaining fixed as the crack tip advances. In each case is analyzed by asymptotic and numerical methods to determine its qualitative form and, in particular its rate of decay to its steady-state value. The effect of such simplifying assumptions as quasi-static propagation or an elastic material is also illustrated. The second loading is intended as an idealized model of the dynamic fracture experiments of Ravi-Chandar and Knauss [13-16].

**[1]**J. D. Achenbach and A. Neimitz,*Fast fracture and crack arrest according to the Dugdale model*, Engrs. Fracture Mech.**14**, 385-395 (1981)**[2]**D. D. Ang, J. Lund, and F. Stenger,*Complex variable and regularization methods of inversion of the Laplace transform*, preprint**[3]**C. Atkinson,*A note on some dynamic crack problems in linear viscoelasticity*, Arch. Mech. (Arch. Mech. Stos.)**31**, 829-849 (1979)**[4]**C. Atkinson and C. J. Coleman,*On some steady-state moving boundary problems in the linear theory of viscoelasticity*, J. Inst. Math. Appl.**20**, 85-106 (1977)**[5]**C. Atkinson and J. R. D. List,*A moving crack problem in a viscoelastic solid*, Internat. J. Engrg. Sci.**10**, 309-322 (1972)**[6]**C. Atkinson and C. Popelar,*Antiplane dynamic crack propagation in a viscoelastic strip*, J. Mech. Phys. Solids**27**, 431-439 (1979)**[7]**B. Davies and B. Martin,*Numerical inversion of the Laplace transform: A survey and comparison of methods*, J. Comput. Phys.**33**, 2-31 (1979)**[8]**E. B. Glennie and J. R. Willis,*An examination of the effects of some idealized models of fracture on accelerating cracks*, J. Mech. Phys. Solids**19**, 11-30 (1971)**[9]**J. M. Herrmann and L. Schovanec,*Quasi-static mode*III*fracture in a nonhomogeneous viscoelastic body*, Acta Mech.**85**, 235-249 (1990)**[10]**J. M. Herrmann and J. R. Walton,*On the energy release rate for dynamic transient anti-plane shear crack propagation in a general linear viscoelastic body*, J. Mech. Phys. Solids.**37**, 619-645 (1989)**[11]**J. M. Hermann and J. R. Walton,*A comparison on the dynamic transient anti-plane shear crack energy release rate for standard linear solid and power-law type viscoelastic materials*, ASME J. Engrg. Res. Tech.**113**, 222-229 (1991)**[12]**C. Popelar and C. Atkinson,*Dynamic crack propagation in a viscoelastic strip*, J. Mech. Phys. Solids**28**, 79-93 (1980)**[13]**K. Ravi-Chandar and W. G. Knauss,*Dynamic crack-tip stresses under stress wave loading--a comparison of theory and experiment*, Internat. J. Fracture**20**, 209-222 (1982)**[14]**K. Ravi-Chandar and W. G. Knauss,*An experimental investigation into dynamic fracture*: I.*Crack initiation and arrest*, Internat. J. Fracture**25**, 247-262 (1984)**[15]**K. Ravi-Chandar and W. G. Knauss,*An experimental investigation into dynamic fracture*: II.*Microstructural aspects*, Internat. J. Fracture**26**, 65-80 (1984)**[16]**K. Ravi-Chandar and W. G. Knauss,*An experimental investigation into dynamic fracture*: III.*On steady-state crack propagation and crack branching*, Internat. J. Fracture**26**, 141-154 (1984)**[17]**L. Schovanec and J. R. Walton,*The energy release rate for a quasi-static mode*I*crack in a nonhomogeneous linearly viscoelastic body*, Engrg. Fracture Mech.**28**, 445-454 (1987)**[18]**L. Schovanec and J. R. Walton,*The quasi-static propagation of a plane strain crack in a power-law inhomogeneous linearly viscoelastic body*, Acta Mech.**67**, 61-77 (1987)**[19]**L. Schovanec and J. R. Walton,*The energy release rate for two parallel steadily propagating mode*III*cracks in a viscoelastic body*, Internat. J. Fracture**41**, 133-155 (1989)**[20]**J. R. Walton,*On the steady-state propagation of an anti-plane shear crack in an infinite general linearly viscoelastic body*, Quart. Appl. Math.**39**, 37-52 (1982)**[21]**J. R. Walton,*Dynamic steady-state fracture propagation in general linear viscoelastic material*, in Workshop on Dynamic Fracture (W. G. Knauss, K. Ravi-Chandar, and A. J. Rosakis, eds.), pp. 197-204, California Inst. of Tech., Pasadena, CA, 1983**[22]**J. R. Walton,*The dynamic steady-state propagation of an anti-plane shear crack in a general linearly viscoelastic layer*, J. Appl. Mech.**52**, 853-856 (1985)**[23]**J. R. Walton,*The dynamic energy release rate for a steadily propagating anti-plane shear crack in a linearly viscoelastic body*, J. Appl. Mech.**54**, 635-641 (1987)**[24]**J. R. Walton,*The dynamic energy release rate for a steadily propagating mode*I*crack in an infinite, linearly viscoelastic body*, J. Appl. Mech.**112**, 343-353 (1990)**[25]**W. T. Weeks,*Numerical inversion of Laplace transforms using Laguerre functions*, J. Assoc. Comput. Mach. 419-429 (1966)**[26]**J. R. Willis,*Crack propagation in viscoelastic media*, J. Mech. Phys. Solids**15**, 229-240 (1967)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73M25,
73F15

Retrieve articles in all journals with MSC: 73M25, 73F15

Additional Information

DOI:
https://doi.org/10.1090/qam/1276234

Article copyright:
© Copyright 1994
American Mathematical Society