Explanation of spurt for a non-Newtonian fluid by a diffusion term

Authors:
P. Brunovský and D. Ševčovič

Journal:
Quart. Appl. Math. **52** (1994), 401-426

MSC:
Primary 76A10; Secondary 35Q35, 73F15

DOI:
https://doi.org/10.1090/qam/1292194

MathSciNet review:
MR1292194

Full-text PDF

References | Similar Articles | Additional Information

**[1]**S. Angenent, J. Mallet-Paret, and L. A. Pelletier,*Stable transition layers in a semilinear boundary value problems*, J. Differential Equations**67**, 212-242 (1987)**[2]**H. Bellout, F. Bloom, and J. Nečas,*Phenomenological behavior of multipolar viscous fluids*, Quart. Appl. Math.**50**, 559-583 (1992)**[3]**A. V. Bhave, R. C. Armstrong, and R. A. Brown,*Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions*, J. Chem. Phys.**87**, 3024-3025 (1991)**[4]**A. W. El-Kareh and G. L. Leal,*Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion*, J. Non-Newtonian Fluid Mech.**33**, 257-287 (1989)**[5]**D. Henry,*Geometric theory of semilinear parabolic equations*, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981**[6]**J. K. Hunter and M. Slemrod,*Viscoelastic fluid flow exhibiting hysteretic phase changes*, Phys. Fluids**26**, 2345-2351 (1983)**[7]**R. Kolkka and G. Ierley,*Phase space analysis of the spurt phenomenon fluid for the Giesekus viscoelastic fluid model*, J. Non-Newtonian Fluid Mech.**33**, 305-323 (1989)**[8]**R. Kolkka, D. Malkus, D. Hansen, G. Ierley, and R. Worthing,*Spurt phenomena of the Johnson-Sagelman fluid and related models*, J. Non-Newtonian Fluid Mech.**29**, 303-325 (1988)**[9]**Xiao-Biao Lin,*Shadowing lemma and singularly perturbed boundary value problems*, SIAM J. Appl. Math.**49**, 26-54 (1989)**[10]**D. S. Malkus, J. A. Nohel, and B. J. Plohr,*Analysis of new phenomena in shear flow of non-Newtonian fluids*, SIAM J. Appl. Math.**51**, 899-929 (1991)**[11]**D. S. Malkus, J. A. Nohel, and B. J. Plohr,*Dynamics of shear flow of a non-Newtonian fluid*, J. Comp. Phys.**87**, 464-487 (1990)**[12]**J. A. Nohel and R. L. Pego,*Nonlinear stability and asymptotic behavior of shearing motions of a non-Newtonian fluid*, SIAM J. Math. Anal.**24**, 911-942 (1993)**[13]**J. A. Nohel, R. L. Pego, and A. E. Tzavaras,*Stability of discontinuous steady states in shearing motion of a non-Newtonian fluid*, Proc. Roy. Soc. Edinburgh Sect. A**115**, 39-59 (1990)**[14]**M. Protter and H. F. Weinberger,*Maximum principles in differential equations*, Springer-Verlag, New York, 1984**[15]**G. Vinogradov, A. Malkin, Yu. Yanovskii, E. Borisenkova, B. Yarlykov, and G. Berezhnaya,*Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes*, J. Polymer Sci. Part A-2**10**, 1061-1084 (1972)**[16]**G. F. Webb,*Existence and asymptotic behavior for a strongly damped nonlinear wave equation*, Canad. Math. J.**32**, 631-643 (1980)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76A10,
35Q35,
73F15

Retrieve articles in all journals with MSC: 76A10, 35Q35, 73F15

Additional Information

DOI:
https://doi.org/10.1090/qam/1292194

Article copyright:
© Copyright 1994
American Mathematical Society