Oscillation and stability in a simple genotype selection model

Authors:
E. A. Grove, V. Lj. Kocić, G. Ladas and R. Levins

Journal:
Quart. Appl. Math. **52** (1994), 499-508

MSC:
Primary 92D10; Secondary 39A12

DOI:
https://doi.org/10.1090/qam/1292200

MathSciNet review:
MR1292200

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the oscillation, the stability, and the global attractivity of the simple genotype selection model

**[1]**P. Cull,*Global stability of population models*, Bull. Math. Biol.**43**, 47-58 (1981)**[2]**P. Cull,*Stability of discrete one-dimensional population models*, Bull. Math. Biol.**50**, 67-75 (1988)**[3]**M. E. Fisher, B. S. Goh, and T. L. Vincent,*Some stability conditions for discrete-time single species models*, Bull. Math. Biol.**41**, 861-875 (1979)**[4]**I. Györi and G. Ladas,*Oscillation Theory of Delay Differenial Equations with Applications*, Clarendon Press, Oxford, 1991**[5]**Y. Huang,*A note on stability of discrete population models*, Math. Biosci.**95**, 189-198 (1989)**[6]**J. H. Jaroma, V. Lj. Kocić, and G. Ladas,*Global asymptotic stability of a second-order difference equation*, Partial Differential Equations (J. Wiener and J. K. Hale, eds.), Pitman Research Notes in Mathematics Series, no. 273, Longman Scientific and Technical, 1992, pp. 80-84**[7]**V. Lj. Kocić and G. Ladas,*Global attractivity in nonlinear delay difference equations*, Proc. Amer. Math. Soc.**115**, 1083-1088 (1992)**[8]**S. Levin and R. May,*A note on difference-delay equations*, Theoret. Population Biol.**9**, 178-187 (1976)**[9]**R. M. May,*Nonlinear problems in ecology and resource management*, Course 8 in Chaotic Behaviour of Deterministic Systems (G. Iooss, R. H. G. Helleman, and R. Stora, eds.), North-Holland, Amsterdam, 1983**[10]**G. Rosenkranz,*On global stability of discrete population models*, Math. Biosci.**64**, 227-231 (1983)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
92D10,
39A12

Retrieve articles in all journals with MSC: 92D10, 39A12

Additional Information

DOI:
https://doi.org/10.1090/qam/1292200

Article copyright:
© Copyright 1994
American Mathematical Society