Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Energy estimates for the biharmonic equation in three dimensions

Author: Chang Hao Lin
Journal: Quart. Appl. Math. 52 (1994), 649-663
MSC: Primary 73C10; Secondary 35Q99
DOI: https://doi.org/10.1090/qam/1306042
MathSciNet review: MR1306042
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. K. Knowles, An energy estimate for the biharmonic equation and its application to Saint-Venant's principle in plane elastostatistics, Indian J. Pure Appl. Math. 14, 791-805 (1983)
  • [2] J. K. Knowles, On Saint-Venant's principle in the two dimensional linear theory of elasticity, Arch. Rational Mech. Anal. 21, 1-22 (1966)
  • [3] C. O. Horgan, Decay estimates for the biharmonic equation with applications to Saint-Venant's principles in plane elasticity and Stokes flows, Quart. Appl. Math. 47, 147-157 (1989)
  • [4] C. O. Horgan and J. K. Knowles, Recent developments concerning Saint-Venant's principle, T. Y. Wu and J. W. Hutchinson (eds.), Adv. Appl. Mech. 23, Academic Press, San Diego, 1983, pp. 179-269
  • [5] J. N. Flavin, On Knowles' version of Saint-Venant's principle in two dimensional elastostatics, Arch. Rational Mech. Anal. 53, 366-375 (1974)
  • [6] O. A. Oleinik and G. A. Yosifian, The Saint-Venant's principle in the two-dimensional theory of elasticity and boundary problems for a biharmonic equation in unbounded domains, Sibirsk. Math. Zh. 19, 1154-1165 (1978); English transl., Siberian Math. J. 19, 813-822 (1978)
  • [7] K. A. Ames and L. E. Payne, Decay estimates in steady pipe flow, SIAM J. Math. Anal. 20, 789-815 (1989)
  • [8] G. Faber, Beweis, dass under allen homogenen membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitz Bayer Akad. Wiss., 169-192 (1923)
  • [9] G. Pólya and G. Szegö, Isoperimetric inequalities in mathematical physics, Ann. of Math. Stud. 27, Princeton Univ. Press, Princeton, NJ, 1951
  • [10] C. O. Horgan, Recent developments concerning Saint-Venant's principle: an update, Appl. Mech. Rev. 42, 295-303 (1989)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73C10, 35Q99

Retrieve articles in all journals with MSC: 73C10, 35Q99

Additional Information

DOI: https://doi.org/10.1090/qam/1306042
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society