Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 
 

 

Thermomechanical evolution of a microstructure


Authors: Karl-Heinz Hoffmann and Tomáš Roubíček
Journal: Quart. Appl. Math. 52 (1994), 721-737
MSC: Primary 73B30; Secondary 35Q72, 73F15, 73S10, 73V25
DOI: https://doi.org/10.1090/qam/1306046
MathSciNet review: MR1306046
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A nonisothermal microstructure evolution model, governed by a Helmholtz free energy which need not be convex as a function of deformations, is formulated by using a convexified geometry proposed already in [13]. A multidimensional but scalar case is treated. It is shown that, as a special case, this model includes the usual nonlinear thermo-visco-elasticity. In the case of an actual appearance of a microstructure, the existence of a weak solution to a partial linearized model is shown by a semi-implicit time discretization.


References [Enhancements On Off] (What's this?)

  • [1] H. W. Alt, K.-H. Hoffman, M. Niezgódka, and J. Sprekels, A numerical study of structural phase transitions in shape memory alloys, Preprint No. 90, Institut für Mathematik, Universität Augsburg, 1985
  • [2] P. Colli, M. Frémond, and A. Visintin, Thermo-mechanical evolution of shape memory alloys, Quart. Appl. Math. 48, 31-47 (1990)
  • [3] C. M. Dafermos, On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity, Arch. Rational Mech. Anal. 29, 241-271 (1968)
  • [4] C. M. Dafermos, Global smooth solutions to the initial boundary value problem for the equations of one-dimensional thermoviscoelasticity, SIAM J. Math. Anal. 13, 397-408 (1982)
  • [5] F. Falk, Landau theory and martensitic phase transitions (L. Delaey and M. Chandrasekaran, eds.), Proc. Internat. Conf. on Martensitic Transformations, Les Editions de Physique, Les Ulis, 1982
  • [6] M. Frémond, Matériaux à mémoire de forme, C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers. Sci. Terre 304, 239-244 (1987)
  • [7] K.-H. Hoffmann, M. Niezgódka, and Zheng Songmu, Existence and uniqueness of global solutions to an extended model of the dynamical development in shape memory alloys, Nonlinear Anal. 15, 977-990 (1990)
  • [8] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Graylock Press, Baltimore, 1961
  • [9] J. Nečas, Dynamic in the nonlinear thermo-visco-elasticity, Symposium ``Partial Differential Equations'' Holzhau 1988 (B.-W. Schulze and H. Triebel, eds.), Teubner-Texte Math. 112, Teubner, Leipzig, 1989, pp. 197-203
  • [10] J. Nečas, A. Novotný, and V. Šverák, On the uniqueness of solution to the nonlinear thermo-viscoelasticity, Math. Nachr. 149, 319-324 (1990)
  • [11] R. E. Nickell and J. L. Sackman, Variational principles for linear coupled thermoelasticity, Quart. Appl. Math. 26, 11-26 (1968)
  • [12] M. Niezgódka and J. Sprekels, Existence of solutions for a mathematical model of structural phase transitions in shape memory alloys, Math. Methods Appl. Sci. 10, 197-223 (1988)
  • [13] T. Roubíček, Evolution of a microstructure: a convexified model, Math. Methods Appl. Sci. 16, 625-642 (1993)
  • [14] T. Roubíček, Optimality conditions for nonconvex variational problems relaxed in terms of Young measures (submitted)
  • [15] T. Roubíček, Finite element approximation of a microstructure evolution, Math. Methods Appl. Sci. 17, 377-393 (1994)
  • [16] M. Schatzman, A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle, J. Math. Anal. Appl. 73, 138-191 (1980)
  • [17] J. Sprekels, Global existence for thermomechanical processes with nonconvex free energies of Ginzburg-Landau form, J. Math. Anal. Appl. 141, 333-348 (1989)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 73B30, 35Q72, 73F15, 73S10, 73V25

Retrieve articles in all journals with MSC: 73B30, 35Q72, 73F15, 73S10, 73V25


Additional Information

DOI: https://doi.org/10.1090/qam/1306046
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society