Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Steady flows of nonlinear bipolar viscous fluids between rotating cylinders


Authors: Frederick Bloom and Wenge Hao
Journal: Quart. Appl. Math. 53 (1995), 143-171
MSC: Primary 76D99; Secondary 35Q35, 73B25, 76A05
DOI: https://doi.org/10.1090/qam/1315453
MathSciNet review: MR1315453
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The boundary-value problem governing the steady Couette flow of a nonlinear bipolar viscous fluid is formulated and solved for particular, degenerate, values of the constitutive parameters; for the general situation, in which the relevant constitutive parameters are positive, we establish existence and uniqueness of solutions to the boundary-value problems. Continuous dependence of solutions, in appropriate norms, is also established with respect to the parameters governing the nonlinearity and multipolarity of the model as these constitutive parameters converge to zero.


References [Enhancements On Off] (What's this?)

  • [1] A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, 2nd ed., Springer-Verlag, 1990
  • [2] G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, 1967
  • [3] L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, 1968
  • [4] J. Nečas and M. Šilhavý, Multipolar viscous fluids, Quart. Appl. Math. 49, 247-265 (1991)
  • [5] R. A. Toupin, Theories of elasticity with couple stress, Arch. Rat. Mech. Anal. 17, 85-112 (1964)
  • [6] A. E. Green and R. S. Rivlin, Simple force and stress multipoles, Arch. Rat. Mech. Anal. 16, 325-353 (1964)
  • [7] A. E. Green and R. S. Rivlin, Multipolar continuum mechanics, Arch. Rat. Mech. Anal. 17, 113-147 (1964)
  • [8] J. L. Bleustein and A. E. Green, Dipolar fluids, Internat. J. Engrg. Sci. 5, 323-340 (1967)
  • [9] H. Bellout, F. Bloom, and J. Nečas, Phenomenological behavior of multipolar viscous fluids, Quart. Appl. Math. 50, 559-583 (1992)
  • [10] A. C. Eringen, Simple microfluids, Internat. J. Engrg. Sci. 2, 205-217 (1964)
  • [11] O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Publ., 1969
  • [12] O. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them, Boundary Value Problems of Mathematical Physics V, Amer. Math. Soc., Providence, RI, 1970
  • [13] S. Kaniel, On the initial-value problem for an incompressible fluid with nonlinear viscosity, J. Math. Mech. 19, 681-706 (1970)
  • [14] Q. Du and M. D. Gunzburger, Analysis of a Ladyzhenskaya model for incompressible viscous flow, J. Math. Anal. Applic. 155, 21-45 (1991)
  • [15] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969
  • [16] R. Temam, Navier-Stokes Equations 3rd ed., North-Holland, 1984
  • [17] Y.-R. Ou and S. S. Sritharan, Analysis of regularized Navier-Stokes equations I, Quart. Appl. Math. 49, 651-685 (1991)
  • [18] Y.-R. Ou and S. S. Sritharan, Analysis of regularized Navier-Stokes equations II, Quart. Appl. Math. 49, 687-728 (1991)
  • [19] H. Bellout, F. Bloom, and J. Nečas, Young measure solutions for non-Newtonian incompressible fluids, Comm. in P.D.E. (to appear)
  • [20] H. Bellout, F. Bloom, and J. Nečas, Existence, uniqueness, and stability of solutions to the initial boundary value problem for bipolar viscous fluids, Differential and Integral Equations (to appear)
  • [21] H. Bellout, F. Bloom, and J. Nečas, Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids, Asymptotic Analysis (to appear)
  • [22] F. Bloom, Attractors of non-Newtonian fluids, J. Dynamics and Differential Equations (to appear)
  • [23] H. Bellout and F. Bloom, Steady plane Poiseuille flows of incompressible multipolar fluids, Internat. J. Non-Linear Mech. 28, 503-518 (1993)
  • [24] H. Bellout and F. Bloom, Existence and asymptotic stability of time-dependent Poiseuille flows of isothermal bipolar fluids, Applicable Analysis 15, 115-130 (1993)
  • [25] H. Bellout and F. Bloom, On the uniqueness of plane Poiseuille solutions of the equations of incompressible bipolar fluids, Internat. J. Engrg. Sci. 31, 1535-1549 (1993)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76D99, 35Q35, 73B25, 76A05

Retrieve articles in all journals with MSC: 76D99, 35Q35, 73B25, 76A05


Additional Information

DOI: https://doi.org/10.1090/qam/1315453
Article copyright: © Copyright 1995 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website