On unstable and neutral spectra of incompressible inviscid and viscid fluids on the D torus

Author:
Vincent Xiaosong Liu

Journal:
Quart. Appl. Math. **53** (1995), 465-486

MSC:
Primary 76D05; Secondary 35Q30, 76E05, 76N10

DOI:
https://doi.org/10.1090/qam/1343462

MathSciNet review:
MR1343462

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We completely determine all the unstable modes and neutral modes for the Kolmogorov flow on the two-dimensional torus for both the Navier-Stokes equations and the Euler equations. We also give comments on ``vorticity generation".

**[1]**P. Constantin and C. Foias,*Navier-Stokes Equations*, the University of Chicago Press, Chicago, 1988**[2]**P. Constantin, C. Foias, and R. Temam,*On the dimension of the attractors in two-dimensional turbulence*, Physica D.**30**, 284-296 (1988)**[3]**S. Friedlander and M. M. Vishik,*Instability criteria for the flow of an inviscid incompressible fluid*, Phys. Rev. Lett.**66**, no. 17**[4]**W. Gautschi,*Computational aspects of three-term recurrence relations*, SIAM Review**9**(Jan., 1967)**[5]**W. B. Jones and W. J. Thron,*Continued fractions, analytic theory and applications*, Encyclopedia of Math. and Its Appl.**11**(1980)**[6]**C. C. Lin,*The Theory of Hydrodynamic Stability*, Cambridge University Press, Cambridge, 1964**[7]**V. X. Liu,*An example of instability for the Navier-Stokes equations on the 2-dimensional torus*, Comm. Partial Differential Equations (to appear)**[8]**V. X. Liu,*Instability for the Navier-Stokes equations on the 2-dimensional torus and a lower bound for the Hausdorff dimension of their global attractors*, Comm. Math. Phys.**147**, 217-230 (1992)**[9]**V. X. Liu,*On bifurcations of the Navier-Stokes equations on the*2*D torus*, in preparation**[10]**C. Marchioro,*An example of absence of turbulence for any Reynolds number*, Comm. Math. Phys.**105**, 99-106 (1986)**[11]**L. D. Meshalkin and Ya. G. Sinai,*Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid*, J. Appl. Math. Mech.**25**(1961)**[12]**L. M. Milne-Thomson,*The Calculus of Finite Differences*, Macmillan, London, 1933**[13]**O. Perron,*Uber linear Differenzengleichungen*, Acta Math.**34**, 109-137 (1911)**[14]**H. Poincaré,*Sur les équations linéaires aux différentielles ordinaires et aux differences finies*, Amer. J. Math.**7**, 203-258 (1885)**[15]**D. H. Sattinger,*The mathematical problem of hydrodynamic stability*, J. Math. Mech.**19**(1970)**[16]**R. Temam,*Navier-Stokes Equations and Nonlinear Functional Analysis*, CBMS-NSF Regional Conference Series in Applied Math.**41**, SIAM, Philadelphia, 1983**[17]**R. Temam,*Navier-Stokes Equations. Theory and Numerical Analysis*, North-Holland Publishing Co., Amsterdam, New York, 1984**[18]**M. M. Vishik and S. Friedlander,*Dynamo theory methods for hydrodynamic stability*, J. Math. Pure Appl. (to appear)**[19]**V. I. Yudovich,*Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid*, J. Appl. Math. Mech.**29**(1965)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
76D05,
35Q30,
76E05,
76N10

Retrieve articles in all journals with MSC: 76D05, 35Q30, 76E05, 76N10

Additional Information

DOI:
https://doi.org/10.1090/qam/1343462

Article copyright:
© Copyright 1995
American Mathematical Society