Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X

   
 

 

Equilibrium of multivalued permanent systems with nonconvex right-hand sides


Authors: Yong Li, Huai Zhong Wang and Xian Rui Lü
Journal: Quart. Appl. Math. 53 (1995), 673-678
MSC: Primary 34C25; Secondary 34A60
DOI: https://doi.org/10.1090/qam/1359502
MathSciNet review: MR1359502
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of periodic solutions for differential inclusions with nonconvex right-hand sides is proved. As an application, an affirmative answer to the existence of an equilibrium for permanent multivalued systems with nonconvex righthand sides is given.


References [Enhancements On Off] (What's this?)

  • [1] T. F. Bridgland, Jr., Contributions to the theory of generalized differential equations I, Math. Systems Theory 3, 17-50 (1969)
  • [2] F. E. Browder, On a generalization of the Schauder fixed point theorem, Duke Math. J. 26, 291-303 (1959)
  • [3] T. A. Burton and V. Hutson, Repellers in systems with infinite delay, J. Math. Anal. Appl. 137, 240-263 (1989)
  • [4] T. A. Burton and S. Zhang, Unified boundedness, periodicity, and stability in ordinary and functional differential equations, Ann. Mat. Pura Appl. CXLV, 129-258 (1986)
  • [5] G. Butler, H. Freedman, and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc. 96, 425-430 (1986)
  • [6] R. M. Colombo, A. Fryszkowski, T. Rzežuchowski, and V. Staicu, Continuous selections of solutions sets of Lipschitzean differential inclusions, Funkcial Ekvac. 34, 321-330 (1991)
  • [7] H. Freedman and J. So, Persistence in discrete semi-dynamical systems, SIAM J. Math. Anal. 20, 930-938 (1989)
  • [8] R. E. Gaines, R. B. Guenther, and J. W. Lee, Some existence results for differential inclusions, C. R. Acad. Sci. Paris 307, 391-396 (1988)
  • [9] R. E. Graines and J. K. Peterson, Periodic solutions to differential inclusions, Nonlinear Analysis 5, 1109-1131 (1981)
  • [10] G. Haddad and M. Lasry, Periodic solutions of functional differential inclusions and fixed points of $ \sigma $-selectionable correspondences, J. Math. Anal. Appl. 96, 295-312 (1983)
  • [11] J. K. Hale and O. Lopes, Fixed point theorem and dissipative processes, J. Differential Equations 13, 391-402 (1973)
  • [12] J. Hofbauer, An index theorem for dissipative semiflows, Rocky Mount. J. Math. 20, 1017-1031 (1990)
  • [13] J. Hofbauer, V. Hutson, and W. Jansen, Coexistence for systems governed by difference equations of Lotka-Volterra type, J. Math. Biol. 25, 553-570 (1987)
  • [14] J. Hofbauer and K. Sigmund, Dynamical Systems and the Theory of Evolution, Cambridge University Press, 1988
  • [15] W. A. Horn, Some fixed point theorem for compact maps and flows in Banach spaces, Trans. Amer. Math. Soc. 149, 391-404 (1970)
  • [16] V. Hutson, A theorem on average Liapunov functions, Monatsh. Math. 98, 267-275 (1984)
  • [17] V. Hutson, The existence of an equilibrium for permanent systems, Rocky Mountain J. Math. 20, 1033-1040 (1990)
  • [18] V. Hutson and W. Moran, Persistence of species obeying difference equations, Math. Biosci. 15, 203-213 (1982)
  • [19] V. Hutson and W. Moran, Repellers in reaction-diffusion systems, Rocky Mountain J. Math. 17, 301-314 (1987)
  • [20] W. G. Kelley, Periodic solutions of generalized differential equations, SIAM J. Appl. Math. 30, 70-74 (1976)
  • [21] Li Yong, Wang Huaizhong, and Lü Xianrui, Equilibrium of permanent multivalued systems, Quart. Appl. Math. 51, 791-795 (1993)
  • [22] L. E. Miller, Generalized boundary-value problems, J. Math. Anal. Appl. 74, 233-246 (1980)
  • [23] Jack W. Macki, P. Nistri, and P. Zecca, The existence of periodic solutions to nonautonomous differential inclusions, Proc. Amer. Math. Soc. 104, 840-844 (1988)
  • [24] R. Nussbaum, Some asymptotic fixed point theorems, Trans. Amer. Math. Soc. 177, 349-375 (1972)
  • [25] S. Plaskacz, Periodic solutions of nonlinear functional differential inclusions on compact subsets of $ R^{p}$ , J. Math. Anal. Appl. 148, 202-212 (1990)
  • [26] V. Staicu, Continuous selections of solutions sets to evolution equations, Proc. Amer. Math. Soc. 113, 403-413 (1991)
  • [27] T. Yoshizawa, Stability Theory by Liapunov's Second Method, Math. Soc. Japan, Tokyo, 1966
  • [28] S. Zaremba, Sur les équations au paratingent, Bull. Sci. Math. 60, 139-160 (1963)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34C25, 34A60

Retrieve articles in all journals with MSC: 34C25, 34A60


Additional Information

DOI: https://doi.org/10.1090/qam/1359502
Article copyright: © Copyright 1995 American Mathematical Society


Brown University The Quarterly of Applied Mathematics
is distributed by the American Mathematical Society
for Brown University
Online ISSN 1552-4485; Print ISSN 0033-569X
© 2017 Brown University
Comments: qam-query@ams.org
AMS Website