Equilibrium of multivalued permanent systems with nonconvex right-hand sides

Authors:
Yong Li, Huai Zhong Wang and Xian Rui Lü

Journal:
Quart. Appl. Math. **53** (1995), 673-678

MSC:
Primary 34C25; Secondary 34A60

DOI:
https://doi.org/10.1090/qam/1359502

MathSciNet review:
MR1359502

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of periodic solutions for differential inclusions with nonconvex right-hand sides is proved. As an application, an affirmative answer to the existence of an equilibrium for permanent multivalued systems with nonconvex righthand sides is given.

**[1]**T. F. Bridgland, Jr.,*Contributions to the theory of generalized differential equations*I, Math. Systems Theory**3**, 17-50 (1969)**[2]**F. E. Browder,*On a generalization of the Schauder fixed point theorem*, Duke Math. J.**26**, 291-303 (1959)**[3]**T. A. Burton and V. Hutson,*Repellers in systems with infinite delay*, J. Math. Anal. Appl.**137**, 240-263 (1989)**[4]**T. A. Burton and S. Zhang,*Unified boundedness, periodicity, and stability in ordinary and functional differential equations*, Ann. Mat. Pura Appl.**CXLV**, 129-258 (1986)**[5]**G. Butler, H. Freedman, and P. Waltman,*Uniformly persistent systems*, Proc. Amer. Math. Soc.**96**, 425-430 (1986)**[6]**R. M. Colombo, A. Fryszkowski, T. Rzežuchowski, and V. Staicu,*Continuous selections of solutions sets of Lipschitzean differential inclusions*, Funkcial Ekvac.**34**, 321-330 (1991)**[7]**H. Freedman and J. So,*Persistence in discrete semi-dynamical systems*, SIAM J. Math. Anal.**20**, 930-938 (1989)**[8]**R. E. Gaines, R. B. Guenther, and J. W. Lee,*Some existence results for differential inclusions*, C. R. Acad. Sci. Paris**307**, 391-396 (1988)**[9]**R. E. Graines and J. K. Peterson,*Periodic solutions to differential inclusions*, Nonlinear Analysis**5**, 1109-1131 (1981)**[10]**G. Haddad and M. Lasry,*Periodic solutions of functional differential inclusions and fixed points of -selectionable correspondences*, J. Math. Anal. Appl.**96**, 295-312 (1983)**[11]**J. K. Hale and O. Lopes,*Fixed point theorem and dissipative processes*, J. Differential Equations**13**, 391-402 (1973)**[12]**J. Hofbauer,*An index theorem for dissipative semiflows*, Rocky Mount. J. Math.**20**, 1017-1031 (1990)**[13]**J. Hofbauer, V. Hutson, and W. Jansen,*Coexistence for systems governed by difference equations of Lotka-Volterra type*, J. Math. Biol.**25**, 553-570 (1987)**[14]**J. Hofbauer and K. Sigmund,*Dynamical Systems and the Theory of Evolution*, Cambridge University Press, 1988**[15]**W. A. Horn,*Some fixed point theorem for compact maps and flows in Banach spaces*, Trans. Amer. Math. Soc.**149**, 391-404 (1970)**[16]**V. Hutson,*A theorem on average Liapunov functions*, Monatsh. Math.**98**, 267-275 (1984)**[17]**V. Hutson,*The existence of an equilibrium for permanent systems*, Rocky Mountain J. Math.**20**, 1033-1040 (1990)**[18]**V. Hutson and W. Moran,*Persistence of species obeying difference equations*, Math. Biosci.**15**, 203-213 (1982)**[19]**V. Hutson and W. Moran,*Repellers in reaction-diffusion systems*, Rocky Mountain J. Math.**17**, 301-314 (1987)**[20]**W. G. Kelley,*Periodic solutions of generalized differential equations*, SIAM J. Appl. Math.**30**, 70-74 (1976)**[21]**Li Yong, Wang Huaizhong, and Lü Xianrui,*Equilibrium of permanent multivalued systems*, Quart. Appl. Math.**51**, 791-795 (1993)**[22]**L. E. Miller,*Generalized boundary-value problems*, J. Math. Anal. Appl.**74**, 233-246 (1980)**[23]**Jack W. Macki, P. Nistri, and P. Zecca,*The existence of periodic solutions to nonautonomous differential inclusions*, Proc. Amer. Math. Soc.**104**, 840-844 (1988)**[24]**R. Nussbaum,*Some asymptotic fixed point theorems*, Trans. Amer. Math. Soc.**177**, 349-375 (1972)**[25]**S. Plaskacz,*Periodic solutions of nonlinear functional differential inclusions on compact subsets of*, J. Math. Anal. Appl.**148**, 202-212 (1990)**[26]**V. Staicu,*Continuous selections of solutions sets to evolution equations*, Proc. Amer. Math. Soc.**113**, 403-413 (1991)**[27]**T. Yoshizawa,*Stability Theory by Liapunov's Second Method*, Math. Soc. Japan, Tokyo, 1966**[28]**S. Zaremba,*Sur les équations au paratingent*, Bull. Sci. Math.**60**, 139-160 (1963)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
34C25,
34A60

Retrieve articles in all journals with MSC: 34C25, 34A60

Additional Information

DOI:
https://doi.org/10.1090/qam/1359502

Article copyright:
© Copyright 1995
American Mathematical Society