Cavitation solutions to homogeneous van der Waals type fluids involving phase transitions

Author:
Baisheng Yan

Journal:
Quart. Appl. Math. **53** (1995), 721-730

MSC:
Primary 35Q35; Secondary 76B99

DOI:
https://doi.org/10.1090/qam/1359507

MathSciNet review:
MR1359507

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, weak solutions to some special Cauchy problems involving phase transitions in are constructed. These solutions exhibit the point singularity known as cavitation.

**[1]**J. M. Ball,*Discontinuous equilibrium solutions and cavitation in nonlinear elasticity*, Phil. Trans. Roy. Soc. London**A 306**, 557-611 (1982)**[2]**C. M. Dafermos,*Hyperbolic systems of conservation laws*, in Systems of Nonlinear Partial Differential Equations (J. M. Ball, ed.), D. Reidel, Dordrecht, 1983, pp. 25-70**[3]**R. J. DiPerna,*Convergence of approximate solutions to conservation laws*, Arch. Rational Mech. Anal.**82**, 27-70 (1983)**[4]**J. L. Ericksen,*Equilibrium of bars*, Journal of Elasticity**5**, 191-201 (1975)**[5]**J. K. Hale,*Ordinary differential equations*, 2nd ed., R. E. Krieger Pub. Co., 1980**[6]**R. Hardt, D. Kinderlehrer, and F. Lin,*Existence and partial regularities of static liquid crystal configurations*, Comm. Math. Phys.**105**, 547-570 (1986)**[7]**R. D. James,*The propagation of phase boundaries in elastic bars*, Arch. Rational Mech. Anal.**73**, 125-158 (1980)**[8]**P. D. Lax,*Shock waves and entropy*, in Contributions to Functional Analysis (E. A. Zarantonelo, ed.), Academic Press, New York, 1976, pp. 603-634**[9]**K. A. Pericak-Spector and S. J. Spector,*Nonuniqueness for a hyperbolic system: Cavitation in nonlinear elastodynamics*, Arch. Rational Mech. Anal.**101**, 293-317 (1988)**[10]**M. Slemrod,*Dynamics of first order phase transitions*, in Phase Transformations and Material Instabilities in Solids (M. E. Gurtin, ed.), Academic Press, New York, 1984**[11]**J. Smoller,*Shock waves and reaction-diffusion equations*, Springer-Verlag, New York, Berlin, Heidelberg, 1983**[12]**L. Wheeler,*A uniqueness theorem for the displacement problem in finite elastodynamics*, Arch. Rational Mech. Anal.**63**, 183-189 (1976)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q35,
76B99

Retrieve articles in all journals with MSC: 35Q35, 76B99

Additional Information

DOI:
https://doi.org/10.1090/qam/1359507

Article copyright:
© Copyright 1995
American Mathematical Society