Analytic solutions of the vector Burgers' equation

Authors:
Steven Nerney, Edward J. Schmahl and Z. E. Musielak

Journal:
Quart. Appl. Math. **54** (1996), 63-71

MSC:
Primary 35Q53; Secondary 35C99, 35K55

DOI:
https://doi.org/10.1090/qam/1373838

MathSciNet review:
MR1373838

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The well-known analytical solution of Burgers' equation is extended to curvilinear coordinate systems in three dimensions by a method that is much simpler and more suitable to practical applications than that previously used [22], The results obtained are applied to incompressible flow with cylindrical symmetry, and also to the decay of an initially linearly increasing wind.

**[1]**H. Bateman,*Some recent researches on the motion of fluids*, Monthly Weather Rev.**43**, 163 (1915)**[2]**E. R. Benton,*Solutions illustrating the decay of dissipation layers in Burgers' nonlinear diffusion equation*, Phys. Fluids**10**, 2113 (1967)**[3]**E. R. Benton,*A table of solutions of the one-dimensional Burgers equation*, Quart. Appl. Math.**30**, 195-212 (1972)**[4]**J. M. Burgers,*Application of a model system to illustrate some points of the statistical theory of free turbulence*, Proc. Roy. Neth. Acad. Sci. Amsterdam**43**, 2-12 (1940)**[5]**J. M. Burgers,*The Non-Linear Diffusion Equation*, D. Reidel Pub. Co., Dordrecht-Holland, 1974**[6]**J. I. Castor, D. C. Abbott, and R. I. Klein,*Radiatively-driven winds in Of stars*, Astrophys. J.**195**, 157 (1975)**[7]**J. D. Cole,*On a quasi-linear parabolic equation occurring in aerodynamics*, Quart. Appl. Math.**9**, 225-236 (1951)**[8]**D. B. Friend and D. C. Abbott,*The theory of radiatively-driven stellar winds*. III.*Wind models with finite disk correction and rotation*, Astrophys. J.**311**, 701 (1986)**[9]**Z. A. Gol'berg,*Finite amplitude waves in magnetohydrodynamics*, JETP**15**, 179 (1962)**[10]**S. N. Gurbatov, A. I. Saichev, and S. F. Shandarin,*The large-scale structure of the universe in the frame of the model of non-linear diffusion*, Monthly Notices Roy. Astronom. Soc.**236**, 385 (1989)**[11]**S. N. Gurbatov, A. N. Malakhov, and A. I. Saichev,*Nonlinear Random Waves and Turbulence in Nondispersive Media: Waves, Rays, and Particles*, Manchester University Press, distributed by St. Martin's Press, New York, 1991**[12]**E. Hopf,*The partial differential equation*, Comm. Pure and Appl. Math.**3**, 201-230 (1950)**[13]**D. T. Jeng, R. Foerster, S. Haaland, and W. C. Meecham,*Statistical initial-value problem for Burgers' model equation of turbulence*, Phys. Fluids**7**, 2114 (1966)**[14]**J. I. Katz and M. L. Green,*A Burgers model of interstellar dynamics*, Astronom. and Astrophys.**161**(1986)**[15]**L. A. Kofman and S. F. Shandarin,*Theory of adhesion for the large-scale structure of the universe*, Nature**334**, 129 (1988)**[16]**L. A. Kofman and A. C. Raga,*Modeling structures of knots in jet flows with the Burgers equation*, Astrophys. J.**390**, 359 (1992)**[17]**P. Lagerstrom, J. D. Cole, and L. Trilling,*Problems in the Theory of Viscous Compressible Fluids*, monograph, California Institute of Technology, 1949**[18]**M. J. Lighthill,*Viscosity effects in sound waves of finite amplitude*, in Surveys in Mechanics (Batchelor and Davies, eds.), Cambridge Univ. Press, Cambridge, 1956**[19]**H. Margenau and G. M. Murphy,*The Mathematics of Physics and Chemistry*, Von Nostrand Co., London, 1956**[20]**B. Van Der Pol,*On a non-linear partial differential equation satisfied by the logarithm of the Jacobian theta-functions, with arithmetical applications*, Proc. Acad. Sci. Amsterdam**A13**, 261-271, 272-284 (1951)**[21]**G. N. Watson,*A Treatise on the Theory of Bessel Functions*, second ed., Cambridge Univ. Press, Cambridge, 1962, pp. 393-396**[22]**K. B. Wolf, L. Hlavaty, and S. Steinberg,*Non-linear differential equations as invariants under group action on coset bundles: Burgers and Korteweg-de Vries equation families*, J. Math. Anal. Appl.**114**, 340 (1986)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35Q53,
35C99,
35K55

Retrieve articles in all journals with MSC: 35Q53, 35C99, 35K55

Additional Information

DOI:
https://doi.org/10.1090/qam/1373838

Article copyright:
© Copyright 1996
American Mathematical Society