Existence and stability of business cycles

Author:
Akitaka Dohtani

Journal:
Quart. Appl. Math. **54** (1996), 105-120

MSC:
Primary 90A16; Secondary 34C05

DOI:
https://doi.org/10.1090/qam/1373841

MathSciNet review:
MR1373841

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide several sufficient conditions for the existence and the stability of limit cycles in two-dimensional differential equation systems. We also apply our results to business cycle models in the Keynesian tradition.

**[1]**J.P. Benassy,*A non-Walrasian model of the business cycle*, J. Econom. Behavior Org.**5**, 77-89 (1984)**[2]**L. Cesari,*Asymptotic Behavior and Stability Problems in Ordinary Differential Equations*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd ed., Springer-Verlag, Berlin-Gottingen-Heidelberg, 1959**[3]**W. W. Chang and D. J. Smyth,*The existence and persistence of cycles in a non-linear model: Kaldor's 1940 model re-examined*, Rev. Econom. Stud.**38**, 37-44 (1971)**[4]**A. F. Filippov,*A sufficient condition for the existence of a stable limit cycle for a second order equation*, Mat. Sb.**30**, 171-180 (1952) (Russian)**[5]**G. Gabisch and H.-W. Lorenz,*Business Cycle Theory*, Lecture Notes in Econom. Math. Systems, Vol. 283, Springer-Verlag, Berlin, 1987**[6]**M. Galeotti and F. Gori,*Uniqueness of periodic orbits in Liénard-type business-cycle models*, Metroeconomica**40**, 135-146 (1989)**[7]**R. M. Goodwin,*The nonlinear accelerator and the persistence of business cycles*, Econometrica**19**, 1-17 (1951)**[8]**S. Ichimura,*Towards a general non-linear macrodynamic theory of economic fluctuations*, Post-Keynesian Economics (K. K. Kurihara, ed.), Rutgers University Press, New Brunswick, 1955**[9]**N. Kaldor,*A model of the trade cycle*, Econom. J.**50**, 78-92 (1940)**[10]**N. Levinson and O. K. Smith,*A general equation for relaxation oscillations*, Duke Math. J.**9**, 382-403 (1942)**[11]**H. W. Lorenz,*On the uniqueness of limit cycles in business cycle theory*, Metroeconomica**38**, 281-293 (1987)**[12]**H. W. Lorenz,*Nonlinear Dynamical Economics and Chaotic Motion*, Lecture Notes in Econom. Math. Systems, Vol. 334, Springer-Verlag, Berlin, 1989**[13]**S. Mizohata and M. Yamaguchi,*On the existence of periodic solutions of the nonlinear differential equation*, Mem. Coll. Sci. Univ. Kyoto, Ser.**A 27**, 109-113 (1952)**[14]**T. Owase,*Dynamical system theory and analysis of economic fluctuations*, The Study of Dynamical Systems (N. Aoki, ed.), World Scientific, Singapore, 1989**[15]**T. Owase,*Nonlinear dynamical systems and economic fluctuations: A brief historical survey*, Trans. IEICE. E74, 1393-1400 (1991)**[16]**G. Sansone and R. Conti,*Non-linear Differential Equations*, Macmillan, New York, 1964**[17]**G. J. Schinasi,*Fluctuations in a dynamic, intermediate-run IS-LM model: Applications of the Poincaré-Bendixon theorem*, J. Econom. Theory**28**, 369-375 (1982)**[18]**Ye Yanqian,*Theory of Limit Cycles*, Translations of Mathematical Monographs, Vol. 66, Amer. Math. Soc., Providence, R.I., 1986**[19]**T. Yoshizawa,*Stability Theory by Liapunov's Second Method*, Mathematical Society of Japan, Tokyo, 1966**[20]**Zhang Zhifen,*On the uniqueness of the limit cycles of some nonlinear oscillation equations*, Dokl. Akad. Nauk. SSSR**119**, 659-662 (1958) (Russian)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
90A16,
34C05

Retrieve articles in all journals with MSC: 90A16, 34C05

Additional Information

DOI:
https://doi.org/10.1090/qam/1373841

Article copyright:
© Copyright 1996
American Mathematical Society