Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Adiabatic invariants for strongly nonlinear dynamical systems described with complex functions

Author: L. Cveticanin
Journal: Quart. Appl. Math. 54 (1996), 407-421
MSC: Primary 34C29; Secondary 34C99, 70H05, 70K99
DOI: https://doi.org/10.1090/qam/1402402
MathSciNet review: MR1402402
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the adiabatic invariants for strongly nonlinear dynamical systems with two degrees of freedom described by complex functions are obtained. The method [1] developed for dynamical systems with one degree of freedom is extended to systems with two degrees of freedom. The method is based on Noether's theory and the use of Krylov-Bogolubov-Mitropolski (KBM) and elliptic-Krylov-Bogolubov (EKB) asymptotic techniques. The adiabatic invariants for two types of strong nonlinearities are constructed: the pure cubic nonlinearity and quasi-cubic nonlinearity. The adiabatic invariants are used to obtain the approximate solution to the equations of motion.

References [Enhancements On Off] (What's this?)

  • [1] Dj. S. Djukic, Adiabatic invariants for dynamical systems with one degree of freedom, Internat. J. Non-Linear Mech. 16, 489-498 (1981)
  • [2] P. G. L. Leach, Invariants and wave functions for some time-dependent harmonic oscillator-type Hamiltonians, J. Math. Phys. 18, 1902-1907 (1977)
  • [3] N. J. Gunther and P. G. L. Leach, Generalized invariants for the time-dependent harmonic oscillator, J. Math. Phys. 18, 572-576 (1977)
  • [4] W. Sarlet and L. Y. Bahar, A direct construction of first integrals for certain non-linear dynamical systems, Internat. J. Non-Linear Mech. 15, 133-146 (1980)
  • [5] L. Cveticanin, Adiabatic invariants of dynamical systems with two degrees of freedom, Internat. J. Non-linear Mech. 29, 799-808 (1994)
  • [6] B. D. Vujanovic, Conservation laws of rheo-linear dynamical systems with one- and two-degrees-of-freedom, Internat. J. Non-Linear Mech. 27, 309-322 (1992)
  • [7] B. D. Vujanovic and S. E. Jones, Variational Methods in Nonconservative Phenomena, Academic Press, New York, 1989, p. 370
  • [8] L. Cveticanin, Approximate analytical solutions to a class of non-linear equations with complex functions, J. Sound Vibration 157, no. 2, 289-302 (1992)
  • [9] N. N. Bogolubov and Ju. A. Mitropolski, Asimptoticheskie metodi v teorii nelinejnih kolebanij, Gos. Fiz. Mat. Lit., Moscow, 1963
  • [10] L. Cveticanin, An approximate solution of a coupled differential equation with variable parameter, Trans. ASME Ser. E. J. Appl. Mech. 60, no. 1, 214-217 (1993)
  • [11] S. Bravo Yuste and J. Diaz Bejarano, Construction of approximate analytical solutions to a new class of nonlinear oscillator equations, J. Sound Vibration 110, 347-350 (1986)
  • [12] S. Bravo Yuste and J. Diaz Bejarano, Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions, J. Sound Vibration 139, 151-163 (1990)
  • [13] V. T. Coppola and R. H. Rand, Averaging using elliptic functions: Approximation of limit cycles, Acta Mechanica 81, 125-142 (1990)
  • [14] S. Bravo Yuste, Quasi-pure-cubic oscillators studied using a Krylov-Bogoliubov method, J. Sound Vibration 158, 267-275 (1992)
  • [15] S. Bravo Yuste, On Duffing oscillators with slowly varying parameters, Internat J. Non-Linear Mech. 26, 671-677 (1991)
  • [16] L. Cveticanin, An approximate solution for a system of two coupled differential equations, J. Sound Vibration 152, 375-380 (1992)
  • [17] M. Abramowitz and I. A. Stegun, Spravochnik po specialynyim funkcijam, Moscow, Nauka, 1979

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 34C29, 34C99, 70H05, 70K99

Retrieve articles in all journals with MSC: 34C29, 34C99, 70H05, 70K99

Additional Information

DOI: https://doi.org/10.1090/qam/1402402
Article copyright: © Copyright 1996 American Mathematical Society

American Mathematical Society