Adiabatic invariants for strongly nonlinear dynamical systems described with complex functions

Author:
L. Cveticanin

Journal:
Quart. Appl. Math. **54** (1996), 407-421

MSC:
Primary 34C29; Secondary 34C99, 70H05, 70K99

DOI:
https://doi.org/10.1090/qam/1402402

MathSciNet review:
MR1402402

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the adiabatic invariants for strongly nonlinear dynamical systems with two degrees of freedom described by complex functions are obtained. The method [1] developed for dynamical systems with one degree of freedom is extended to systems with two degrees of freedom. The method is based on Noether's theory and the use of Krylov-Bogolubov-Mitropolski (KBM) and elliptic-Krylov-Bogolubov (EKB) asymptotic techniques. The adiabatic invariants for two types of strong nonlinearities are constructed: the pure cubic nonlinearity and quasi-cubic nonlinearity. The adiabatic invariants are used to obtain the approximate solution to the equations of motion.

**[1]**Dj. S. Djukic,*Adiabatic invariants for dynamical systems with one degree of freedom*, Internat. J. Non-Linear Mech.**16**, 489-498 (1981)**[2]**P. G. L. Leach,*Invariants and wave functions for some time-dependent harmonic oscillator-type Hamiltonians*, J. Math. Phys.**18**, 1902-1907 (1977)**[3]**N. J. Gunther and P. G. L. Leach,*Generalized invariants for the time-dependent harmonic oscillator*, J. Math. Phys.**18**, 572-576 (1977)**[4]**W. Sarlet and L. Y. Bahar,*A direct construction of first integrals for certain non-linear dynamical systems*, Internat. J. Non-Linear Mech.**15**, 133-146 (1980)**[5]**L. Cveticanin,*Adiabatic invariants of dynamical systems with two degrees of freedom*, Internat. J. Non-linear Mech.**29**, 799-808 (1994)**[6]**B. D. Vujanovic,*Conservation laws of rheo-linear dynamical systems with one- and two-degrees-of-freedom*, Internat. J. Non-Linear Mech.**27**, 309-322 (1992)**[7]**B. D. Vujanovic and S. E. Jones,*Variational Methods in Nonconservative Phenomena*, Academic Press, New York, 1989, p. 370**[8]**L. Cveticanin,*Approximate analytical solutions to a class of non-linear equations with complex functions*, J. Sound Vibration**157**, no. 2, 289-302 (1992)**[9]**N. N. Bogolubov and Ju. A. Mitropolski,*Asimptoticheskie metodi v teorii nelinejnih kolebanij*, Gos. Fiz. Mat. Lit., Moscow, 1963**[10]**L. Cveticanin,*An approximate solution of a coupled differential equation with variable parameter*, Trans. ASME Ser. E. J. Appl. Mech.**60**, no. 1, 214-217 (1993)**[11]**S. Bravo Yuste and J. Diaz Bejarano,*Construction of approximate analytical solutions to a new class of nonlinear oscillator equations*, J. Sound Vibration**110**, 347-350 (1986)**[12]**S. Bravo Yuste and J. Diaz Bejarano,*Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions*, J. Sound Vibration**139**, 151-163 (1990)**[13]**V. T. Coppola and R. H. Rand,*Averaging using elliptic functions: Approximation of limit cycles*, Acta Mechanica**81**, 125-142 (1990)**[14]**S. Bravo Yuste,*Quasi-pure-cubic oscillators studied using a Krylov-Bogoliubov method*, J. Sound Vibration**158**, 267-275 (1992)**[15]**S. Bravo Yuste,*On Duffing oscillators with slowly varying parameters*, Internat J. Non-Linear Mech.**26**, 671-677 (1991)**[16]**L. Cveticanin,*An approximate solution for a system of two coupled differential equations*, J. Sound Vibration**152**, 375-380 (1992)**[17]**M. Abramowitz and I. A. Stegun,*Spravochnik po specialynyim funkcijam*, Moscow, Nauka, 1979

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
34C29,
34C99,
70H05,
70K99

Retrieve articles in all journals with MSC: 34C29, 34C99, 70H05, 70K99

Additional Information

DOI:
https://doi.org/10.1090/qam/1402402

Article copyright:
© Copyright 1996
American Mathematical Society