Derivative of a function of a nonsymmetric second-order tensor

Authors:
B. Balendran and Sia Nemat-Nasser

Journal:
Quart. Appl. Math. **54** (1996), 583-600

MSC:
Primary 73B05

DOI:
https://doi.org/10.1090/qam/1402412

MathSciNet review:
MR1402412

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Exact explicit expressions are obtained for an isotropic tensor-valued function of a nonsymmetric second-order tensor, and its derivative, without resort to eigenvector calculations. These are then used to derive explicit expressions for the material time derivative of the general strain measures in terms of the deformation rate tensor.

**[1]**B. Balendran and S. Nemat-Nasser,*Integration of inelastic constitutive equations for constant velocity gradient with large rotation*, Appl. Math. Comput.**67**, 161-195 (1995)**[2]**D. E. Carlson and A. Hoger,*The derivative of a tensor-valued function of a tensor*, Quart. Appl. Math.**XLIV**, no. 3, 409-423 (1986)**[3]**Z.-h. Guo, Th. Lehmann, H. Liang, and C.-s. Man, Twirl tensors and the tensor equation**AX -- XA = C**, J. Elasticity**27**, 227-245 (1992)**[4]**M. E. Gurtin and K. Spear,*On the relationship between the logarithmic strain rate and the stretching tensor*, Internat. J. Solids and Structures**19**, no. 5, 437-444 (1983)**[5]**R. Hill,*On constitutive inequalities for simple materials. I*, J. Mech. Phys. Solids**16**, 229 (1968)**[6]**R. Hill,*Constitutive inequalities for isotropic elastic solids under finite strain*, Proc. Roy. Soc. London Ser. A**314**, 457-472 (1970)**[7]**R. Hill,*Aspects of invariance in solid mechanics*, Adv. in Appl. Mech.**18**, 1-75 (1978)**[8]**A. Hoger,*The material time derivative of logarithmic strain*, Internat. J. Solids and Structures**22**, no. 9, 1019-1032 (1986)**[9]**M. M. Mehrabadi and S. Nemat-Nasser,*Some basic kinematical relations for finite deformations of continua*, Mech. Materials**6**, 127-138 (1987)**[10]**R. S. Rivlin,*Further remarks on the stress-deformation relations for isotropic materials*, J. Rational Mech. Anal.**4**, 681-701 (1955)**[11]**M. Scheidler,*Time rates of generalized strain tensors, Part*I:*Component formulas*, Mech. Materials**11**, 199-210 (1991)**[12]**M. Scheidler,*Time rates of generalized strain tensors, Part*II:*Approximate basis-free formulas*, Mech. Materials**11**, 211-219 (1991)**[13]**M. Scheidler,*The tensor equation*,*with applications to kinematics of continua*, J. Elasticity**36**, 117-153 (1994)**[14]**T. C. T. Ting,*Determination of**and more general isotropic tensor functions of***C**, J. Elasticity**15**, 319-323 (1985)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73B05

Retrieve articles in all journals with MSC: 73B05

Additional Information

DOI:
https://doi.org/10.1090/qam/1402412

Article copyright:
© Copyright 1996
American Mathematical Society