On existence of periodic orbits for the FitzHugh nerve system

Authors:
S. A. Treskov and E. P. Volokitin

Journal:
Quart. Appl. Math. **54** (1996), 601-607

MSC:
Primary 34C25; Secondary 34C23, 92C20

DOI:
https://doi.org/10.1090/qam/1417226

MathSciNet review:
MR1417226

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Applying bifurcation theory, we construct various phase portraits of the FitzHugh differential system and describe the set of parameters for which this system has periodic solutions.

**[1]**R. FitzHugh,*Impulses and physiological states in theoretical models of nerve membrane*, Biophys. J.**1**, 445-466 (1961)**[2]**J. Sugie,*Nonexistence of periodic solutions for the FitzHugh nerve system*, Quart. Appl. Math.**49**, 543-554 (1991)**[3]**K. P. Hadeler, U. an der Heiden, and K. Schumacher,*Generation of the nervous impulse and periodic oscillations*, Biol. Cybernet.**23**, 211-218 (1976)**[4]**E. Kaumann and U. Staude,*Uniqueness and nonexistence of limit cycles for the FitzHugh equation*, Equadiff 82 (H. W. Knobloch and K. Schmitt, eds.), Lecture Notes in Math., vol. 1017, Springer-Verlag, 1983, pp. 313-321**[5]**V. I. Arnold,*Geometrical Methods in the Theory of Ordinary Differential Equations*, Springer-Verlag, New York, 1982 (Russian original, Nauka, Moscow, 1977)**[6]**J. Guckenheimer and P. Holmes,*Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields*, Springer-Verlag, New York, 1986, p. 459**[7]**N. N. Bautin and E. A. Leontovich,*Methods and Ways (Examples) of the Qualitative Analysis of Dynamical Systems in a Plane*, Nauka, Moscow, 1990, p. 480 (in Russian)**[8]**A. I. Chibnik and E. E. Shnol,*Software for Qualitative Analysis of Differential Equations*, Research Computer Center, USSR Academy of Sciences, Pushcino, 1982, p. 10 (in Russian)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
34C25,
34C23,
92C20

Retrieve articles in all journals with MSC: 34C25, 34C23, 92C20

Additional Information

DOI:
https://doi.org/10.1090/qam/1417226

Article copyright:
© Copyright 1996
American Mathematical Society