Global existence and singularity formation in solutions of a modified Fourier law

Author:
K. Saxton

Journal:
Quart. Appl. Math. **54** (1996), 697-707

MSC:
Primary 35L60; Secondary 35Q72, 73B30, 80A20

DOI:
https://doi.org/10.1090/qam/1417233

MathSciNet review:
MR1417233

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is the analysis of formation of singularities from smooth initial data, for rigid conductors. The modified Fourier law used asserts that the governing second-order equation is hyperbolic with first-order dissipation. Global existence for small initial data is also examined.

**[1]**V. A. Cimmelli and W. Kosinski,*Heat waves in continuous media at low temperatures*, Quaderni del Dipartimento di Matematica, vol. 6, Universaita della Basilicata, Potenza, 1992**[2]**V. A. Cimmelli and W. Kosinski,*Well posedness for a nonlinear hyperbolic heat equation*, Ricerche di Matematica**42**, 49-68 (1993)**[3]**H. Hattori,*Breakdown of smooth solutions in dissipative nonlinear hyperbolic equations*, Quart. Appl. Math.**40**, 113-127 (1982)**[4]**W. Kosinski,*Elastic waves in the presence of a new temperature scale, Elastic wave propagation*, M. F. McCarthy and M. A. Hayes, eds., Elsevier Science, North-Holland, Amsterdam, 1989, p. 629**[5]**W. Kosinski,*Gradient catastrophe in the solution of nonconservative hyperbolic systems*, J. Math. Anal. Appl.**61**, 672-688 (1977)**[6]**W. Kosinski and K. Saxton,*The effect on finite time breakdown due to modified Fourier laws*, Quart Appl. Math.**51**, 55-68 (1993)**[7]**P. D. Lax,*Development of singularities of solutions of nonlinear hyperbolic partial differential equations*, J. Math. Phys.**5**, 611-613 (1964)**[8]**L. Longwei and Z. Yongshu,*Existence and non-existence of global smooth solutions for quasilinear hyperbolic systems*, Chinese Ann. of Math.**9B**, 372-377 (1988)**[9]**R. C. MacCamy,*An integro-differential equation with application in heat flow*, Quart. Appl. Math.**35**, 1-19 (1977)**[10]**R. Malek-Madani and J. A. Nohel,*Formation of singularities for a conservation law with memory*, Siam J. Math.**16**, 530-540 (1985)**[11]**A. Matsumara,*Global existence and asymptotic solutions of the second order quasi-linear hyperbolic equations with first order dissipation*, Publ. Res. Inst. Math. Sci. Kyoto Univ.**A 13**, 349-379 (1977)**[12]**T. Nishida,*Nonlinear hyperbolic equations and related topics in fluid dynamics*, Publications Mathématiques D'Orsay, Université de Paris-Sud, Département de Mathématiques, vol. 78.02, 1978**[13]**M. Slemrod,*Instability of steady shearing flow in a nonlinear viscoelastic fluid*, Arch. Rational Mech. Anal.**68**, 211-225 (1978)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
35L60,
35Q72,
73B30,
80A20

Retrieve articles in all journals with MSC: 35L60, 35Q72, 73B30, 80A20

Additional Information

DOI:
https://doi.org/10.1090/qam/1417233

Article copyright:
© Copyright 1996
American Mathematical Society