Conservation laws and canonical forms in the Stroh formalism of anisotropic elasticity

Author:
Gary A. Hatfield

Journal:
Quart. Appl. Math. **54** (1996), 739-758

MSC:
Primary 73C02; Secondary 35Q72, 73B40

DOI:
https://doi.org/10.1090/qam/1417237

MathSciNet review:
MR1417237

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We find and classify all first-order conservation laws in the Stroh formalism. All possible non-semisimple degeneracies are considered. The laws are found to depend on three arbitrary analytic functions. In some instances, there is an ``extra'' law which is quadratic in . Separable and inseparable canonical forms for the stored energy function are given for each type of degeneracy and they are used to compute the conservation laws. The existence of a real Stroh eigenvector is found to be a necessary and sufficient condition for separability. The laws themselves are stated in terms of the Stroh eigenvectors.

**[1]**J. D. Eshelby,*The force on an elastic singularity*, Philos. Trans. Roy. Soc. London Ser. A**244**, 57-112 (1951)**[2]**J. R. Rice,*A path-independent integral and the approximate analysis of strain concentrations by notches and cracks*, J. Appl. Mech.**35**, 376-386 (1968)**[3]**J. K. Knowles and Eli Sternberg,*On a class of conservation laws in linearized and finite elasto-statistics*, Arch. Rat. Mech. Anal.**44**, 187-211 (1972)**[4]**E. Noether,*Invariante Variationprobleme*, Göttigner Nachrichten, Mathematisch physikalische klasse**2**, 235-257 (1918)**[5]**E. Bessel-Hagen,*Über die Erhaltungssätze der Elektrodynamik*, Math. Ann.**84**, 258-276 (1921)**[6]**B. Budiansky and J. R. Rice,*Conservation laws and energy release rates*, J. Appl. Mech.**40**, 201-203 (1973)**[7]**D. G. B. Edelen,*Aspects of variational arguments in the theory of elasticity: Fact and folklore*, Internat. J. Solids and Structures**17**, 729-740 (1981)**[8]**P. J. Olver,*Conservation laws in elasticity*I.*General results*, Arch. Rat. Mech. Anal.**85**, 119-129 (1984)**[9]**P. J. Olver,*Conservation laws in elasticity*II.*Linear homogeneous isotropic elastostatics*, Arch. Rat. Mech. Anal.**85**, 131-160 (1984)**[10]**P. J. Olver,*Errata to*[9], Arch. Rat. Mech. Anal.**102**, 385-387 (1988)**[11]**P. J. Olver,*Conservation laws in elasticity*III.*Planar linear anisotropic elastostatics*, Arch. Rat. Mech. Anal.**102**, 167-181 (1988)**[12]**G. Caviglia and A. Morro,*Conservation laws in anisotropic elastostatics*, Internat. J. Engrg. Sci.**26**, 393-400 (1988)**[13]**J. D. Eshelby, W. T. Read, and W. Shockley,*Anisotropic elasticity with applications to dislocation theory*, Acta Metal.**1**, 251-259 (1953)**[14]**A. N. Stroh,*Dislocation and cracks in anisotropic elasticity*, Philos. Mag.**3**, 625-646 (1958)**[15]**A. N. Stroh,*Steady state problems in anisotropic elasticity*, J. Math. Phys.**41**, 77-103 (1962)**[16]**G. A. Hatfield,*Conservation laws in anisotropic elasticity*, Ph.D. Thesis, University of Minnesota, 1994**[17]**C.-S. Yeh, Y.-C. Shu, and K.-C. Wu,*Conservation laws in anisotropic elasticity*I.*Basic framework*, Proc. Roy. Soc. London Ser. A**443**, 139-151 (1993)**[18]**T. C. T. Ting,*On anisotropic elastic materials that possess three identical Stroh eigenvalues as do isotropic materials*, Quart. Appl. Math.**52**, 363-375 (1994)**[19]**P. J. Olver,*Canonical anisotropic elastic moduli*in Modern Theory of Anisotropic Elasticity and Applications (J. Wu, T. C. T. Ting, and D. Barnett, eds.), SIAM, Philadelphia, 1990, pp. 325-339**[20]**M. E. Gurtin,*The linear theory of elasticity*in Mechanics of Solids, Vol. 2 (C. Truesdell, ed.), Springer-Verlag, New York, 1973, pp. 1-295**[21]**P. J. Olver,*Applications of Lie groups to differential equations*, Graduate Texts in Mathematics**107**, Springer-Verlag, New York, 1986**[22]**P. Chadwick and G. D. Smith,*Foundations of the theory of surface waves in anisotropic elastic materials*, Adv. Appl. Mech.**17**, 51-262 (1977)**[23]**T. C. T. Ting,*The Stroh formalism and certain invariances in two-dimensional anisotropic elasticity*in Modern Theory of Anisotropic Elasticity and Applications (J. Wu, T. C. T. Ting, and D. Barnett, eds.), SIAM, Philadelphia, 1990, pp. 3-32**[24]**T. C. T. Ting and C. Hwu,*Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N*, Internat. J. Solids and Structures**24**, 65-76 (1988)**[25]**D. M. Barnett and J. Lothe,*Synthesis of the sextic and the integral formalism for dislocation, Green's function and surface waves in anisotropic elastic solids*, Phys. Norv.**7**(1973)**[26]**A. S. Lodge,*The transformation to isotropic form of the equilibrium equations for a class of anisotropic elastic solids*, Quart. J. Mech. Appl. Math.**8**, 211-225 (1955)**[27]**P. J. Olver,*Canonical elastic moduli*, J. Elasticity**19**, 189-212 (1988)**[28]**N. B. Alphutova, A. B. Movchan, and S. A. Nazarov,*On algebraic equivalence of planar problems in anisotropic and orthotropic elasticity*, Vestnik Leningrad. Universiteta. Mekhanika, No. 3, 1991 (Russian)**[29]**G. W. Milton and A. B. Movchan,*A correspondence between plane elasticity and the two-dimensional real and complex dielectric equations in anisotropic media*, Proc. Roy. Soc. London Ser. A**450**, 293-317 (1995)**[30]**T. C. T. Ting,*Effects of change of reference coordinates on the stress analysis of anisotropic elastic materials*, Internat. J. Solids and Structures**18**, 139-152 (1982)**[31]**P. J. Olver,*The equivalence problem and canonical forms for quadratic lagrangians*, Adv. Appl. Math.**9**, 226-257 (1988)**[32]**Max Jodeit, Jr. and P. J. Olver,*On the equation*, Proc. Roy. Soc. Edinburgh**116A**, 341-358 (1990)**[33]**K.-C. Wu,*Representations of stress intensity factors by path-independent integrals*, J. Appl. Mech.**35**, 780-785 (1989)**[34]**C.-S. Yeh, Y.-C. Shu, and K.-C. Wu,*Conservation laws in anisotropic elasticity*II.*Extension and application to thermoelasticity*, Proc. Roy. Soc. London Ser. A**443**, 153-161 (1993)

Retrieve articles in *Quarterly of Applied Mathematics*
with MSC:
73C02,
35Q72,
73B40

Retrieve articles in all journals with MSC: 73C02, 35Q72, 73B40

Additional Information

DOI:
https://doi.org/10.1090/qam/1417237

Article copyright:
© Copyright 1996
American Mathematical Society