Quarterly of Applied Mathematics

Quarterly of Applied Mathematics

Online ISSN 1552-4485; Print ISSN 0033-569X



Slow oscillatory Stokes flow

Author: S. H. Smith
Journal: Quart. Appl. Math. 55 (1997), 1-22
MSC: Primary 76D07
DOI: https://doi.org/10.1090/qam/1433748
MathSciNet review: MR1433748
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two transient problems in slow viscous flow are considered where the corresponding steady-state behaviour leads to the paradoxical results of Stokes and Jeffery. First, the oscillatory flow past a circular cylinder is investigated when the frequency $ \lambda $ tends to zero, where an outer domain of size $ O\left( {\lambda ^{ - 1/2}} \right)$ is required to ensure that the velocity conditions at infinity are satisfied. The flow close to the cylinder is quasi-steady except for a time of length $ O\left( 1 \right)$ about the time of separation; most of the action takes place in the outer domain where the dominant transient behaviour extends over a time that is $ O\left[ {{{\left\{ {ln\left( {\lambda ^{ - 1}} \right)} \right\}}^{ - 1}}} \right]$ of a complete cycle.

References [Enhancements On Off] (What's this?)

  • [1] G. G. Stokes, On the effect of the internal friction of fluids on the motion of a pendulum, Trans. Cambridge Philos. Soc. 9, 9-106 (1851)
  • [2] C. W. Oseen, Über die Stokessche Formel und über eine verwandt Aufgabe in der Hydrodynamik, Ark. Mat. Astr. Fys. 6, no. 29 (1910)
  • [3] S. Kaplun and P. A. Lagerstrom, Asymptotic expansion of Navier-Stokes solutions for small Reynolds numbers, J. Math. Mech. 6, 585-593 (1957) MR 0091693
  • [4] I. Proudman and J. R. A. Pearson, Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder, J. Fluid Mech. 2, 237-262 (1957) MR 0086545
  • [5] G. B. Jeffery, The rotation of two circular cylinders in a viscous fluid, Proc. Roy. Soc. (A) 101, 169-174 (1922)
  • [6] S. Tomotika and T. Aoi, The steady flow of viscous fluid past a sphere and circular cylinder at small Reynolds numbers, Quart. J. Mech. Appl. Math. 3, 140-161 (1950) MR 0036110
  • [7] J. M. Dorrepaal, M. E. O'Neill, and K. B. Ranger, Two-dimensional Stokes flows with cylinders and line singularities, Mathematika 31, 65-75 (1984) MR 762178
  • [8] C. Pozrikidis, A study of linearized oscillatory flow past particles by the boundary-integral method, J. Fluid Mech. 202, 17-41 (1989) MR 1000879
  • [9] S. Kim and S. J. Karrila, Microhydrodynamics, Butterworth-Heinemann, Boston, 1991
  • [10] A. B. Basset, A treatise on hydrodynamics, Vol. 2, Deighton Bell, Cambridge, 1888
  • [11] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1965 MR 1225604
  • [12] G. Wannier, A contribution to the hydrodynamics of lubrication, Quart. Appl. Math. 8, 1-32 (1950) MR 0037146
  • [13] K. B. Ranger, Eddies in two dimensional Stokes flow, Internat. J. Engrg. Sci. 18, 181-190 (1980)

Similar Articles

Retrieve articles in Quarterly of Applied Mathematics with MSC: 76D07

Retrieve articles in all journals with MSC: 76D07

Additional Information

DOI: https://doi.org/10.1090/qam/1433748
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society